Page 250 - Intro to Tensor Calculus
P. 250

244



               Restrictions on Elastic Constants due to Symmetry

                   The equations (2.4.1) and (2.4.2) can be replaced by an equivalent set of equations which are easier to
               analyze. This is accomplished by defining the quantities

                                                 e 1 ,  e 2 ,  e 3 ,  e 4 ,  e 5 ,  e 6
                                                 σ 1 ,  σ 2 ,  σ 3 ,  σ 4 ,  σ 5 ,  σ 6

               where
                                                                          
                                                e 1  e 4  e 5   e 11  e 12  e 13
                                                e 4  e 2  e 6    =    e 21  e 22  e 23  
                                                e 5  e 6  e 3   e 31  e 32  e 33
               and
                                                                          
                                               σ 1  σ 4  σ 5    σ 11  σ 12  σ 13
                                               σ 4  σ 2  σ 6    =    σ 21  σ 22  σ 23   .
                                               σ 5  σ 6  σ 3    σ 31  σ 32  σ 33
                   Then the generalized Hooke’s law from the equations (2.4.1) and (2.4.2) can be represented in either of
               the forms
                                                                 where i, j =1,... , 6                 (2.4.4)
                                        σ i = c ij e j  or e i = s ij σ j
               where c ij are constants related to the elastic stiffness and s ij are constants related to the elastic compliance.
               These constants satisfy the relation


                                                          where  i, m, j =1,... , 6                    (2.4.5)
                                             s mi c ij = δ mj
                   Here
                                                   e i ,     i = j =1, 2, 3

                                            e ij =
                                                   e 1+i+j ,  i 6= j, and i =1, or, 2
               and similarly
                                                   σ i ,     i = j =1, 2, 3

                                            σ ij =
                                                   σ 1+i+j ,  i 6= j, and i =1, or, 2.
                   These relations show that the constants c ij are related to the elastic stiffness coefficients c pqrs by the
               relations
                                                  c m1 = c ij11  c m4 =2c ij12

                                                  c m2 = c ij22  c m5 =2c ij13
                                                  c m3 = c ij33  c m6 =2c ij23
               where

                                                  i,          if i = j =1, 2, or3
                                            m =
                                                  1+ i + j,   if i 6= j and i =1 or 2.
               A similar type relation holds for the constants s ij and s pqrs . The above relations can be verified by expanding
               the equations (2.4.1) and (2.4.2) and comparing like terms with the expanded form of the equation (2.4.4).
   245   246   247   248   249   250   251   252   253   254   255