Page 251 - Intro to Tensor Calculus
P. 251

245



                   The generalized Hooke’s law can now be expressed in a form where the 36 independent constants can
               be examined in more detail under special material symmetries. We will examine the form

                                                                              
                                         e 1      s 11  s 12  s 13  s 14  s 15  s 16  σ 1
                                                 s 21  s 22  s 23  s 24  s 25
                                        e 2                            s 26   σ 2 
                                                                              
                                                 s 31  s 32  s 33  s 34  s 35
                                                                                    .                 (2.4.6)
                                        e 3                            s 36   σ 3 
                                           =                              
                                                 s 41  s 42  s 43  s 44  s 45
                                        e 4                            s 46   σ 4 
                                                                              
                                         e 5      s 51  s 52  s 53  s 54  s 55  s 56  σ 5
                                         e 6      s 61  s 62  s 63  s 64  s 65  s 66  σ 6
                   Alternatively, in the arguments that follow, one can examine the equivalent form
                                                                             
                                          σ 1     c 11  c 12  c 13  c 14  c 15  c 16  e 1
                                                 c 21  c 22  c 23  c 24  c 25
                                        σ 2                            c 26   e 2 
                                                                             
                                                 c 31  c 32  c 33  c 34  c 35
                                                                                   .
                                        σ 3                            c 36   e 3 
                                            =                             
                                                 c 41  c 42  c 43  c 44  c 45
                                        σ 4                            c 46   e 4 
                                                                             
                                          σ 5     c 51  c 52  c 53  c 54  c 55  c 56  e 5
                                          σ 6     c 61  c 62  c 63  c 64  c 65  c 66  e 6
               Material Symmetries
                   A material (crystal) with one plane of symmetry is called an aelotropic material. If we let the x 1 -
               x 2 plane be a plane of symmetry then the equations (2.4.6) must remain invariant under the coordinate
               transformation
                                                                     
                                                  x 1      10     0     x 1
                                                  x 2    =    01  0     x 2                      (2.4.7)
                                                  x 3      00    −1     x 3
               which represents an inversion of the x 3 axis. That is, if the x 1 -x 2 plane is a plane of symmetry we should be
               able to replace x 3 by −x 3 and the equations (2.4.6) should remain unchanged. This is equivalent to saying
               that a transformation of the type from equation (2.4.7) changes the Hooke’s law to the form e i = s ij σ j where
               the s ij remain unaltered because it is the same material. Employing the transformation equations

                                              x 1 = x 1 ,  x 2 = x 2 ,  x 3 = −x 3                     (2.4.8)

               we examine the stress and strain transformation equations

                                                 ∂x p ∂x q                  ∂x p ∂x q
                                         σ ij = σ pq         and    e ij = e pq    .                   (2.4.9)
                                                  ∂x i ∂x j                 ∂x i ∂x j
               If we expand both of the equations (2.4.9) and substitute in the nonzero derivatives

                                              ∂x 1        ∂x 2        ∂x 3
                                                  =1,         =1,         = −1,                       (2.4.10)
                                              ∂x 1        ∂x 2        ∂x 3
               we obtain the relations
                                                  σ 11 = σ 11    e 11 = e 11
                                                  σ 22 = σ 22    e 22 = e 22

                                                  σ 33 = σ 33    e 33 = e 33
                                                                                                      (2.4.11)
                                                  σ 21 = σ 21    e 21 = e 21
                                                  σ 31 = −σ 31   e 31 = −e 31
                                                                 e 23 = −e 23 .
                                                  σ 23 = −σ 23
   246   247   248   249   250   251   252   253   254   255   256