Page 252 - Intro to Tensor Calculus
P. 252

246



                   We conclude that if the material undergoes a strain, with the x 1 -x 2 plane as a plane of symmetry then

               e 5 and e 6 change sign upon reversal of the x 3 axis and e 1 ,e 2 ,e 3 ,e 4 remain unchanged. Similarly, we find σ 5
               and σ 6 change sign while σ 1 ,σ 2 ,σ 3 ,σ 4 remain unchanged. The equation (2.4.6) then becomes

                                                                               
                                         e 1      s 11  s 12  s 13  s 14  s 15  s 16  σ 1
                                                 s 21  s 22  s 23  s 24  s 25
                                       e 2                             s 26   σ 2 
                                                                               
                                                 s 31  s 32  s 33  s 34  s 35
                                                                                     .               (2.4.12)
                                       e 3                             s 36   σ 3 
                                           =                              
                                                 s 41  s 42  s 43  s 44  s 45
                                       e 4                             s 46   σ 4 
                                                                               
                                        −e 5      s 51  s 52  s 53  s 54  s 55  s 56  −σ 5
                                        −e 6      s 61  s 62  s 63  s 64  s 65  s 66  −σ 6
                   If the stress strain relation for the new orientation of the x 3 axis is to have the same form as the
               old orientation, then the equations (2.4.6) and (2.4.12) must give the same results. Comparison of these
               equations we find that
                                                             s 15 = s 16 =0
                                                             s 25 = s 26 =0

                                                             s 35 = s 36 =0
                                                                                                      (2.4.13)
                                                             s 45 = s 46 =0
                                                   s 51 = s 52 = s 53 = s 54 =0

                                                   s 61 = s 62 = s 63 = s 64 =0.
                   In summary, from an examination of the equations (2.4.6) and (2.4.12) we find that for an aelotropic
               material (crystal), with one plane of symmetry, the 36 constants s ij reduce to 20 constants and the generalized
               Hooke’s law (constitutive equation) has the form

                                                                              
                                         e 1      s 11  s 12  s 13  s 14  0  0  σ 1
                                                 s 21  s 22  s 23  s 24  0
                                        e 2                             0   σ 2 
                                                                  0           
                                                 s 31  s 32  s 33  s 34
                                                                                    .                (2.4.14)
                                        e 3                             0   σ 3 
                                           =                      0       
                                                 s 41  s 42  s 43  s 44
                                        e 4                             0   σ 4 
                                                0   0    0    0               
                                         e 5                        s 55  s 56  σ 5
                                                   0   0    0    0
                                         e 6                        s 65  s 66  σ 6
                   Alternatively, the Hooke’s law can be represented in the form
                                                                             
                                          σ 1     c 11  c 12  c 13  c 14  0  0  e 1
                                                 c 21  c 22  c 23  c 24  0
                                        σ 2                             0   e 2 
                                                                                 
                                                                           
                                                 c 31  c 32  c 33  c 34  0
                                                                                   .
                                        σ 3                             0   e 3 
                                            =                             
                                                 c 41  c 42  c 43  c 44  0
                                        σ 4                             0   e 4 
                                                                             
                                          σ 5      0    0   0    0   c 55  c 56  e 5
                                          σ 6      0    0   0    0   c 65  c 66  e 6
   247   248   249   250   251   252   253   254   255   256   257