Page 257 - Intro to Tensor Calculus
P. 257

251



                   The previous discussion has shown that for an isotropic material the generalized Hooke’s law (constitu-
               tive equations) have the form

                                                          1
                                                    e 11 =  [σ 11 − ν(σ 22 + σ 33 )]
                                                          E
                                                          1
                                                    e 22 =  [σ 22 − ν(σ 33 + σ 11 )]
                                                          E
                                                          1
                                                    e 33 =  [σ 33 − ν(σ 11 + σ 22 )]
                                                          E                  ,                        (2.4.20)
                                                          1+ ν
                                               e 21 = e 12 =  σ 12
                                                           E
                                                          1+ ν
                                               e 32 = e 23 =  σ 23
                                                           E
                                                          1+ ν
                                               e 31 = e 13 =  σ 13
                                                           E
               where equation (2.4.19) holds. These equations can be expressed in the indicial notation and have the form

                                                        1+ ν      ν
                                                   e ij =    σ ij −  σ kk δ ij ,                      (2.4.21)
                                                         E        E
               where σ kk = σ 11 + σ 22 + σ 33 is a stress invariant and δ ij is the Kronecker delta. We can solve for the stress
               in terms of the strain by performing a contraction on i and j in equation (2.4.21). This gives the dilatation
                                                   1+ ν      3ν      1 − 2ν
                                              e ii =    σ ii −  σ kk =     σ kk .
                                                     E       E         E

               Note that from the result in equation (2.4.21) we are now able to solve for the stress in terms of the strain.
               We find

                                                     1+ ν         ν
                                                e ij =    σ ij −     e kk δ ij
                                                       E       1 − 2ν
                                             E                  νE
                                                e ij = σ ij −           e kk δ ij                     (2.4.22)
                                           1+ ν           (1 + ν)(1 − 2ν)
                                                       E            νE
                                          or    σ ij =    e ij +             e kk δ ij .
                                                     1+ ν      (1 + ν)(1 − 2ν)
               The tensor equation (2.4.22) represents the six scalar equations

                                            E                                         E
                                σ 11 =             [(1 − ν)e 11 + ν(e 22 + e 33 )]  σ 12 =  e 12
                                      (1 + ν)(1 − 2ν)                               1+ ν
                                            E                                         E
                                σ 22 =             [(1 − ν)e 22 + ν(e 33 + e 11 )]  σ 13 =  e 13
                                      (1 + ν)(1 − 2ν)                               1+ ν
                                            E                                         E
                                σ 33 =             [(1 − ν)e 33 + ν(e 22 + e 11 )]  σ 23 =  e 23 .
                                      (1 + ν)(1 − 2ν)                               1+ ν
   252   253   254   255   256   257   258   259   260   261   262