Page 276 - Intro to Tensor Calculus
P. 276

270



               where
                                                                  1 ∂
                                                      ∂u r   u r
                                                  Θ=      +    =      (ru r )
                                                       ∂r    r    r ∂r
               is the dilatation. These stresses are found to be

                                          2µ                    2µ
                          σ rr =(λ + µ)c 1 −  2  c 2  σ θθ =(λ + µ)c 1 +  2  c 2  σ zz = λc 1  σ rθ = σ rz = σ zθ =0.
                                          r                     r
               We now apply the boundary conditions


                                                2µ                                         2µ
                      σ rr | r=R 1 n r = − (λ + µ)c 1 −  2  c 2 =+P 1  and σ rr | r=R 0 n r = (λ + µ)c 1 −  2  c 2 = −P 0 .
                                               R 1                                        R 0
               Solving for the constants c 1 and c 2 we find
                                                2      2                2  2
                                               R P 1 − R P 0          R R (P 1 − P 0 )
                                                                          0
                                                                        1
                                                       0
                                                1
                                        c 1 =         2    2  ,  c 2 =      2   2  .
                                             (λ + µ)(R − R )           2µ(R − R )
                                                      0    1                0   1
               This produces the displacement field
                                 2                2        2                2
                               R P 1      r     R 0       R P 0      r     R 1
                                1
                                                           0
                       u r =                  +      −                   +     ,    u θ =0,    u z =0,
                                                          2
                                                               2
                                     2
                                2
                            2(R − R )   λ + µ   µr     2(R − R )   λ + µ   µr
                                                               1
                                0
                                                          0
                                    1
               and stress fields
                                                  2          2       2           2
                                                R P 1       R 0     R P 0      R 1
                                                 1
                                                                     0
                                         σ rr =         1 −     −           1 −
                                                                    2
                                                2
                                               R − R 2 1    r 2   R − R  2 1    r 2
                                                                    0
                                                0
                                                  2          2       2           2
                                                R P 1       R 0     R P 0      R 1
                                                 1
                                                                     0
                                         σ θθ =         1+      −           1+
                                                2
                                                                    2
                                               R − R 2      r 2   R − R  2      r 2
                                                0    1              0    1
                                                         2      2
                                                  λ    R P 1 − R P 0
                                                                0
                                                         1
                                         σ zz =            2    2
                                                λ + µ    R − R  1
                                                           0
                                         σ rz = σ zθ = σ rθ =0
               EXAMPLE 2.4-8. By making simplifying assumptions the Navier equations can be reduced to a more
               tractable form. For example, we can reduce the Navier equations to a one dimensional problem by making
               the following assumptions
                                 1. Cartesian coordinates x 1 = x,  x 2 = y,  x 3 = z
                                 2.u 1 = u 1 (x, t),  u 2 = u 3 =0.
                                 3. There are no body forces.
                                                                          ∂u 1(x, 0)
                                 4. Initial conditions of  u 1 (x, 0) = 0 and     =0
                                                                             ∂t
                                 5. Boundary conditions of the displacement type u 1(0,t)= f(t),
               where f(t) is a specified function. These assumptions reduce the Navier equations to the single one dimen-
               sional wave equation
                                                2         2
                                               ∂ u 1   2  ∂ u 1    2   λ +2µ
                                                    = α      ,    α =        .
                                                ∂t 2     ∂x 2            ρ
               The solution of this equation is
                                                         f(t − x/α),   x ≤ αt

                                              u 1 (x, t)=                     .
                                                         0,            x > αt
   271   272   273   274   275   276   277   278   279   280   281