Page 279 - Intro to Tensor Calculus
P. 279

273



              I 8. Verify the equations defining the stress for plane strain in Cartesian coordinates are

                                                           E
                                               σ xx =             [(1 − ν)e xx + νe yy ]
                                                     (1 + ν)(1 − 2ν)
                                                           E
                                               σ yy =             [(1 − ν)e yy + νe xx ]
                                                     (1 + ν)(1 − 2ν)
                                                          Eν
                                               σ zz =             [e xx + e yy ]
                                                     (1 + ν)(1 − 2ν)
                                                       E
                                               σ xy =     e xy
                                                     1+ ν
                                          σ yz = σ xz =0

              I 9. Verify the equations defining the stress for plane strain in polar coordinates are

                                                           E
                                               σ rr =              [(1 − ν)e rr + νe θθ ]
                                                     (1 + ν)(1 − 2ν)
                                                           E
                                               σ θθ =              [(1 − ν)e θθ + νe rr ]
                                                     (1 + ν)(1 − 2ν)
                                                          νE
                                               σ zz =              [e rr + e θθ ]
                                                     (1 + ν)(1 − 2ν)
                                                       E
                                               σ rθ =     e rθ
                                                     1+ ν
                                          σ rz = σ θz =0


              I 10. Write out the independent components of Hooke’s generalized law for strain in terms of stress, and
               stress in terms of strain, in Cartesian coordinates. Express your results using the parameters ν and E.
               (Assume a linear elastic, homogeneous, isotropic material.)

              I 11. Write out the independent components of Hooke’s generalized law for strain in terms of stress, and
               stress in terms of strain, in cylindrical coordinates. Express your results using the parameters ν and E.
               (Assume a linear elastic, homogeneous, isotropic material.)
              I 12. Write out the independent components of Hooke’s generalized law for strain in terms of stress, and
               stress in terms of strain in spherical coordinates. Express your results using the parameters ν and E. (Assume
               a linear elastic, homogeneous, isotropic material.)

              I 13. For a linear elastic, homogeneous, isotropic material assume there exists a state of plane strain in
               Cartesian coordinates. Verify the equilibrium equations are

                                                    ∂σ xx  ∂σ xy
                                                         +      + %b x =0
                                                     ∂x     ∂y
                                                    ∂σ yx  ∂σ yy
                                                         +      + %b y =0
                                                     ∂x     ∂y
                                                           ∂σ zz
                                                                + %b z =0
                                                            ∂z
               Hint: See problem 14, Exercise 2.3.
   274   275   276   277   278   279   280   281   282   283   284