Page 284 - Intro to Tensor Calculus
P. 284

278



              I 31. Show that in an orthogonal coordinate system the components of ∇(∇· ~u) can be expressed in terms
               of physical components by the relation

                                         1 ∂       1     ∂(h 2 h 3 u(1))  ∂(h 1 h 3 u(2))  ∂(h 1 h 2 u(3))
                            [∇ (∇· ~u)] =                          +             +
                                     i       i                1             2            3
                                         h i ∂x  h 1 h 2 h 3  ∂x         ∂x            ∂x
                                                                        2
              I 32. Show that in orthogonal coordinates the components of ∇ ~u can be written
                                                       2      jk
                                                     ∇ ~u  = g u i,jk = A i
                                                         i
               and in terms of physical components one can write
                                         
                                    3        2            3                     3
                                   X   1   ∂ (h i u(i))  X    m   ∂(h m u(m))  X    m   ∂(h i u(i))
                           h i A(i)=    2           − 2                    −
                                               j
                                       h     ∂x ∂x j          ij     ∂x j           jj    ∂x m
                                   j=1  j               m=1                   m=1
                                                                                                
                                       3                       3                3             !
                                      X            ∂    m     X    m     p     X    m     p
                                   −     h m u(m)           −                −                  
                                                  ∂x j  ij         ip    jj         jp    ij
                                     m=1                      p=1              p=1
                                                                                                     2
              I 33. Use the results in problem 32 to show in Cartesian coordinates the physical components of [∇ ~u] i = A i
               can be represented
                                                                      2
                                                                2
                                                                             2
                                                               ∂ u   ∂ u   ∂ u
                                                2
                                             ∇ ~u · ˆ e 1 = A(1) =  +    +
                                                               ∂x 2  ∂y 2  ∂z 2
                                                                2
                                                                      2
                                                                             2
                                                               ∂ v   ∂ v   ∂ v
                                                2
                                             ∇ ~u · ˆ e 2 = A(2) =  +    +
                                                               ∂x 2  ∂y 2  ∂z 2
                                                                             2
                                                                2
                                                                       2
                                                               ∂ w    ∂ w   ∂ w
                                                2
                                             ∇ ~u · ˆ e 3 = A(3) =  2  +  2  +  2
                                                               ∂x     ∂y    ∂z
               where (u, v, w) are the components of the displacement vector ~u.
                                                                                                     2
              I 34. Use the results in problem 32 to show in cylindrical coordinates the physical components of [∇ ~u] i = A i
               can be represented
                                                                     1
                                              2                2
                                                                            2 ∂u θ
                                            ∇ ~u · ˆ e r = A(1) = ∇ u r −  2  u r −  2
                                                                     r      r ∂θ
                                                                              1
                                              2                2     2 ∂u r
                                            ∇ ~u · ˆ e θ = A(2) = ∇ u θ +  −   u θ
                                                                      2
                                                                     r ∂θ    r 2
                                              2                2

                                            ∇ ~u · ˆ e z = A(3) = ∇ u z
                                                                                             2
                                                                                      2
                                                                       2
                                                                      ∂ α   1 ∂α   1 ∂ α   ∂ α
                                                                 2
               where u r ,u θ ,u z are the physical components of ~u and ∇ α =  +  +     +
                                                                                    2
                                                                      ∂r 2  r ∂r   r ∂θ 2   ∂z 2
                                                                                                     2
              I 35. Use the results in problem 32 to show in spherical coordinates the physical components of [∇ ~u] i = A i
               can be represented
                                                          2              2cot θ      2
                                  2                 2
                                                                 2 ∂u θ                  ∂u φ
                                ∇ ~u · ˆ e ρ = A(1) = ∇ u ρ −  u ρ −  −       u θ −
                                                                 2
                                                                                    2
                                                         ρ 2    ρ ∂θ      ρ 2      ρ sin θ ∂φ
                                                                    1
                                   2                2     2 ∂u ρ              2cos θ ∂u θ
                                ∇ ~u · ˆ e θ = A(2) = ∇ u θ +   −       u θ −    2
                                                                   2
                                                          2
                                                                              2
                                                         ρ ∂θ     ρ sin θ    ρ sin θ ∂φ
                                                            1           2
                                  2                 2
                                                                            ∂u ρ   2cosθ ∂u θ
                                ∇ ~u · ˆ e φ = A(3) = ∇ u φ −  2  u φ +  2      +      2
                                                                                   2
                                                          2
                                                         ρ sin θ     ρ sin θ ∂φ   ρ sin θ ∂φ
               where u ρ ,u θ ,u φ are the physical components of ~u and where
                                                                                    2
                                                             2
                                             2
                                            ∂ α    2 ∂α   1 ∂ α   cot θ ∂α     1   ∂ α
                                       2
                                      ∇ α =     +      +        +         +      2
                                                                             2
                                                          2
                                            ∂ρ 2   ρ ∂ρ  ρ ∂θ 2    ρ 2  ∂θ  ρ sin θ ∂φ 2
   279   280   281   282   283   284   285   286   287   288   289