Page 287 - Intro to Tensor Calculus
P. 287

281



              I 48. Find the stress σ rr ,σ rθ and σ θθ in an infinite plate with a small circular hole, which is traction free,
               when the plate is subjected to a pure shearing force F 12 . Determine the maximum stress.

              I 49. Show that in terms of E and ν

                                        E(1 − ν)                    Eν                    E
                              C 1111 =                 C 1122 =                 C 1212 =
                                     (1 + ν)(1 − 2ν)          (1 + ν)(1 − 2ν)          2(1 + ν)
              I 50. Show that in Cartesian coordinates the quantity

                                                                       2
                                                                               2
                                     S = σ xx σ yy + σ yy σ zz + σ zz σ xx − (σ xy ) − (σ yz ) − (σ xz ) 2
                                                                       1
               is a stress invariant. Hint: First verify that in tensor form S =  (σ ii σ jj − σ ij σ ij ).
                                                                       2
              I 51. Show that in Cartesian coordinates for a state of plane strain where the displacements are given by
               u = u(x, y),v = v(x, y)and w = 0, the stress components must satisfy the equations


                                            ∂σ xx  ∂σ xy
                                                 +      + %b x =0
                                             ∂x     ∂y
                                            ∂σ yx  ∂σ yy
                                                 +      + %b y =0
                                             ∂x     ∂y

                                                                −%    ∂b x  ∂b y
                                                  2
                                                ∇ (σ xx + σ yy )=         +
                                                               1 − ν  ∂x    ∂y
              I 52. Show that in Cartesian coordinates for a state of plane stress where σ xx = σ xx (x, y), σ yy = σ yy (x, y),
               σ xy = σ xy (x, y)and σ xz = σ yz = σ zz = 0 the stress components must satisfy


                                          ∂σ xx  ∂σ xy
                                               +      + %b x =0
                                           ∂x     ∂y
                                          ∂σ yx  ∂σ yy
                                               +      + %b y =0
                                           ∂x     ∂y

                                                2
                                              ∇ (σ xx + σ yy )= − %(ν +1)  ∂b x  +  ∂b y
                                                                         ∂x    ∂y
   282   283   284   285   286   287   288   289   290   291   292