Page 306 - Intro to Tensor Calculus
P. 306

300



               Using the divergence theorem of Gauss one can derive the general conservation law

                                                       ∂Q
                                                                ~
                                                          + ∇· J = S Q                                (2.5.50)
                                                       ∂t
               The continuity equation and energy equations are examples of a scalar conservation law in the special case
               where S Q =0. In Cartesian coordinates, we can represent the continuity equation by letting

                                                      ~
                                                           ~
                                         Q = %  and J = %V = %(V x ˆe 1 + V y ˆe 2 + V z ˆe 3 )       (2.5.51)
               The energy equation conservation law is represented by selecting Q = e t and neglecting the rate of internal
               heat energy we let
                                                  "                      #
                                                               3
                                                              X
                                              ~
                                                                           ˆ
                                              J = (e t + p)v 1 −  v i τ xi + q x e 1 +
                                                              i=1
                                                  "                      #
                                                               3
                                                              X
                                                   (e t + p)v 2 −  v i τ yi + q y  ˆ e 2 +            (2.5.52)
                                                              i=1
                                                  "                      #
                                                               3
                                                              X
                                                   (e t + p)v 3 −  v i τ zi + q z  ˆ e 3 .
                                                              i=1
               In a general orthogonal system of coordinates (x 1 ,x 2 ,x 3 ) the equation (2.5.50) is written
                              ∂                ∂               ∂              ∂
                                 ((h 1 h 2 h 3 Q)) +  ((h 2 h 3 J 1 )) +  ((h 1 h 3 J 2 )) +  ((h 1 h 2 J 3 )) = 0,
                              ∂t              ∂x 1            ∂x 2           ∂x 3
               where h 1 ,h 2 ,h 3 are scale factors obtained from the transformation equations to the general orthogonal
               coordinates.
                   The momentum equations are examples of a vector conservation law having the form
                                                      ∂~a
                                                                     ~
                                                         + ∇· (T )= %b                                (2.5.53)
                                                      ∂t
                                                                          3  3
                                                                         X X
                                                                                     e
                                                                                   e
               where ~a is a vector and T is a second order symmetric tensor T =  T jk ˆ j ˆ k . In Cartesian coordinates
                                                                         k=1 j=1
               we let ~a = %(V x ˆe 1 + V y ˆe 2 + V z ˆe 3 )and T ij = %v i v j + pδ ij − τ ij . In general coordinates (x 1 ,x 2 ,x 3 )the
                                                        ~
               momentum equations result by selecting ~a = %V and T ij = %v i v j + pδ ij − τ ij . In a general orthogonal system
               the conservation law (2.5.53) has the general form
                    ∂               ∂                   ∂                    ∂
                                                                                                 ~
                      ((h 1 h 2 h 3~a)) +  (h 2 h 3T · ˆe 1 ) +  (h 1 h 3T · ˆe 2 ) +  (h 1 h 2T · ˆe 3 ) = %b.  (2.5.54)
                    ∂t             ∂x 1                ∂x 2                 ∂x 3
                   Neglecting body forces and internal heat production, the continuity, momentum and energy equations
               can be expressed in the strong conservative form
                                                   ∂U   ∂E    ∂F   ∂G
                                                      +     +    +     =0                             (2.5.55)
                                                   ∂t   ∂x    ∂y    ∂z
               where
                                                                 
                                                                ρ
                                                              ρV x 
                                                                 
                                                         U =  ρV y                                  (2.5.56)
                                                                 
                                                               ρV z
                                                               e t
   301   302   303   304   305   306   307   308   309   310   311