Page 307 - Intro to Tensor Calculus
P. 307

301



                                                                                 
                                                               ρV x
                                                             2
                                                            x
                                                         ρV + p − τ xx           
                                                                                 
                                         E =              ρV x V y − τ xy                           (2.5.57)
                                                                                 
                                                           ρV x V z − τ xz
                                               (e t + p)V x − V x τ xx − V y τ xy − V z τ xz + q x
                                                                                 
                                                               ρV y
                                                           ρV x V y − τ xy
                                                                                 
                                                            2                    
                                                            y                     
                                         F =             ρV + p − τ yy                               (2.5.58)
                                                                                 
                                                           ρV y V z − τ yz
                                               (e t + p)V y − V x τ yx − V y τ yy − V z τ yz + q y
                                                                                 
                                                               ρV z
                                                           ρV x V z − τ xz
                                                                                 
                                                                                 
                                                           ρV y V z − τ yz                            (2.5.59)
                                         G =                                     
                                                            2                    
                                                          ρV + p − τ zz
                                                            z
                                               (e t + p)V z − V x τ zx − V y τ zy − V z τ zz + q z
               where the shear stresses are τ ij = µ (V i,j + V j,i )+ δ ij λ V k,k for i, j, k =1, 2, 3.
                                              ∗
                                                               ∗
               Computational Coordinates
                   To transform the conservative system (2.5.55) from a physical (x, y, z) domain to a computational (ξ, η, ζ)
               domain requires that a general change of variables take place. Consider the following general transformation
               of the independent variables
                                         ξ = ξ(x, y, z)  η = η(x, y, z)  ζ = ζ(x, y, z)               (2.5.60)
               with Jacobian different from zero. The chain rule for changing variables in equation (2.5.55) requires the
               operators
                                                ∂()   ∂()     ∂()      ∂()
                                                     =    ξ x +   η x +   ζ x
                                                 ∂x    ∂ξ      ∂η      ∂ζ
                                                ∂()   ∂()     ∂()      ∂()
                                                     =    ξ y +   η y +   ζ y                         (2.5.61)
                                                 ∂y    ∂ξ      ∂η      ∂ζ
                                                ∂()   ∂()     ∂()      ∂()
                                                     =    ξ z +   η z +   ζ z
                                                 ∂z    ∂ξ      ∂η      ∂ζ
               The partial derivatives in these equations occur in the differential expressions

                                  dξ =ξ x dx + ξ y dy + ξ z dz                      
                                                                 dξ      ξ x  ξ y  ξ z  dx
                                  dη =η x dx + η y dy + η z dz  or   dη    =    η x  η y  η z     dy    (2.5.62)
                                                                 dζ      ζ x  ζ y  ζ z  dz
                                  dζ =ζ x dx + ζ y dy + ζ z dz

               In a similar mannaer from the inverse transformation equations


                                         x = x(ξ, η, ζ)  y = y(ξ, η, ζ)  z = z(ξ, η, ζ)               (2.5.63)

               we can write the differentials

                                  dx =x ξ dξ + x η dη + x ζ dζ                      
                                                                 dx      x ξ  x η  x ζ  dξ
                                  dy =y ξ dξ + y η dη + y ζ dζ  or    dy    =    y ξ  y η  y ζ     dη    (2.5.64)
                                                                 dz      z ξ  z η  z ζ  dζ
                                  dz =z ξ dξ + z ζ dζ + z ζ dζ
   302   303   304   305   306   307   308   309   310   311   312