Page 328 - Intro to Tensor Calculus
P. 328

322



              I 22. In generalized orthogonal coordinates, show that the physical components of the rate of deformation
               stress can be written, for i 6= j


                                             h i ∂   v(i)   h j ∂   v(j)
                                  σ(ij)= µ ∗              +                ,  no summation,
                                             h j ∂x j  h i  h i ∂x i  h j
               and for i 6= j 6= k

                                         1 ∂v(i)    1     ∂h i    1     ∂h i
                        σ(ii)= −p +2µ ∗         +     v(j)    +     v(k)
                                         h i ∂x i  h i h j  ∂x j  h i h k  ∂x k

                                 λ ∗    ∂               ∂               ∂
                             +            {h 2 h 3 v(1)} +  {h 1 h 3 v(2)} +  {h 1h 2 v(3)} ,  no summation
                               h 1 h 2 h 3 ∂x 1        ∂x 2           ∂x 3
              I 23. Find the physical components for the rate of deformation stress in Cartesian coordinates. Hint: See
               problem 22.

              I 24. Find the physical components for the rate of deformations stress in cylindrical coordinates. Hint: See
               problem 22.
                                                                                              1
              I 25. Verify the Navier-Stokes equations for an incompressible fluid can be written ˙v i = − p ,i +νv i,mm +b i
                                                                                              %
               where ν =  µ ∗  is called the kinematic viscosity.
                          %
              I 26. Verify the Navier-Stokes equations for a compressible fluid with zero bulk viscosity can be written
                      1     ν                          µ ∗
                ˙ v i = − p ,i +  v m,mi + νv i,mm + b i with ν =  %  the kinematic viscosity.
                     %      3
              I 27. The constitutive equation for a certain non-Newtonian Stokesian fluid is σ ij = −pδ ij +βD ij +γD ik D kj .
               Assume that β and γ are constants (a) Verify that σ ij,j = −p ,i + βD ij,j + γ(D ik D kj,j + D ik,j D kj )
               (b) Write out the Cauchy equations of motion in Cartesian coordinates. (See page 236).
              I 28. Let the constitutive equations relating stress and strain for a solid material take into account thermal
                                                                                     1+ ν     ν
               stresses due to a temperature T . The constitutive equations have the form e ij =  σ ij −  σ kk δ ij +αT δ ij
                                                                                      E       E
               where α is a coefficient of linear expansion for the material and T is the absolute temperature. Solve for the
               stress in terms of strains.

              I 29. Derive equation (2.5.53) and then show that when the bulk coefficient of viscosity is zero, the Navier-
               Stokes equations, in Cartesian coordinates, can be written in the conservation form
                                              2
                                  ∂(%u)   ∂(%u + p − τ xx )  ∂(%uv − τ xy )  ∂(%uw − τ xz )
                                        +                +             +              = %b x
                                    ∂t          ∂x              ∂y            ∂z
                                                             2
                                   ∂(%v)   ∂(%uv − τ xy )  ∂(%v + p − τ yy )  ∂(%vw − τ yz )
                                        +             +                 +             = %b y
                                    ∂t         ∂x              ∂y             ∂z
                                                                           2
                                  ∂(%w)   ∂(%uw − τ xz )  ∂(%vw − τ yz )  ∂(%w + p − τ zz )
                                        +             +             +                 = %b z
                                   ∂t         ∂x             ∂y              ∂z
                                                              2
                                                  ∗
               where v 1 = u,v 2 = v,v 3 = w and τ ij = µ (v i,j + v j,i − δ ij v k,k ). Hint: Alternatively, consider 2.5.29 and use
                                                              3
               the continuity equation.
   323   324   325   326   327   328   329   330   331   332   333