Page 329 - Intro to Tensor Calculus
P. 329

323



                                                           2
                                                     ∗
              I 30. Show that for a perfect gas, where λ = − µ and η = µ is a function of position, the vector form
                                                                        ∗
                                                             ∗
                                                           3
               of equation (2.5.25) is
                    D~v            4                         2
                          ~
                   %    = %b −∇p + ∇(η∇· ~v)+ ∇(~v ·∇η) − ~v ∇ η +(∇η) × (∇× ~v) − (∇· ~v)∇η −∇ × (∇× (η~v))
                    Dt             3
                                               Dh    Dp    ∂Q
              I 31. Derive the energy equation %   =     +    −∇· ~ +Φ. Hint: Use the continuity equation.
                                                                   q
                                               Dt    Dt    ∂t
              I 32. Show that in Cartesian coordinates the Navier-Stokes equations of motion for a compressible fluid
               can be written

                        Du         ∂p    ∂      ∂u              ∂      ∂u   ∂v      ∂      ∂w    ∂u
                                                          ~
                                                                     ∗
                                                                                         ∗
                       ρ    =ρb x −   +     2µ ∗   + λ ∇· V  +      µ (   +    ) +      µ (   +    )
                                                      ∗
                        Dt         ∂x   ∂x      ∂x              ∂y     ∂y   ∂x      ∂z     ∂x    ∂z

                        Dv         ∂p   ∂      ∂v               ∂      ∂v   ∂w      ∂      ∂w    ∂w
                                                          ~
                       ρ    =ρb y −   +     2µ ∗  + λ ∇· V   +     µ (   +     ) +      µ (   +    )
                                                                                         ∗
                                                     ∗
                                                                     ∗
                        Dt         ∂y   ∂y     ∂y              ∂z      ∂z   ∂y      ∂x     ∂y    ∂x

                        Dv         ∂p   ∂      ∂w               ∂      ∂w    ∂u      ∂     ∂v    ∂w
                                                          ~
                                                                                          ∗
                                                                     ∗
                                                      ∗
                       ρ    =ρb z −   +     2µ ∗   + λ ∇· V  +      µ (   +    ) +      µ (   +    )
                        Dt         ∂z   ∂z      ∂z              ∂x     ∂x    ∂z     ∂y     ∂z    ∂y
               where (V x ,V y ,V z )= (u, v, w).
              I 33. Show that in cylindrical coordinates the Navier-Stokes equations of motion for a compressible fluid
               can be written
                                 2
                         DV r  V θ         ∂p    ∂      ∂V r             1 ∂     1 ∂V r  ∂V θ  V θ
                                                                   ~
                      %      −      =%b r −   +     2µ ∗    + λ ∇· V  +       µ (      +     −   )
                                                               ∗
                                                                               ∗
                         Dt     r          ∂r   ∂r      ∂r               r ∂θ    r ∂θ     ∂r    r

                                         ∂      ∂V r  ∂V z    2µ ∗  ∂V r  1 ∂V θ  V r
                                      +      µ (    +    ) +      (    −      −    )
                                              ∗
                                        ∂z      ∂z    ∂r       r   ∂r    r ∂θ    r

                       DV θ   V r V θ      1 ∂p   1 ∂       1 ∂V θ  V r             ∂      1 ∂V z  ∂V θ
                                                                              ~
                                                                                         ∗
                    %       +       =%b θ −     +      2µ (      +   )+ λ ∇· V   +      µ (     +     )
                                                                          ∗
                                                          ∗
                        Dt     r           r ∂θ   r ∂θ      r ∂θ    r               ∂z     r ∂θ    ∂z

                                         ∂      1 ∂V r  ∂V θ  V θ    2µ ∗  1 ∂V r  ∂V θ  V θ
                                              ∗
                                      +      µ (     +     −    ) +     (     +      −   )
                                        ∂r      r ∂θ    ∂r    r       r  r ∂θ    ∂r    r

                                           ∂p    ∂                       1 ∂
                                DV z                    ∂V z       ~              ∂V r   ∂V z
                              %     =%b z −   +      2µ ∗   + λ ∇· V   +      µ r(    +     )
                                                                                ∗
                                                               ∗
                                Dt         ∂z   ∂z      ∂z               r ∂r      ∂z    ∂r

                                        1 ∂      1 ∂V z  ∂V θ
                                      +       µ (      +    )
                                               ∗
                                        r ∂θ     r ∂θ    ∂z
                                                                                         2
              I 34. Show that the dissipation function Φ can be written as Φ = 2µ D ij D ij + λ Θ .
                                                                                       ∗
                                                                            ∗
              I 35. Verify the identities:
                                   D          ∂e t                   D           De     D    2
                                                         ~
                           (a)   %    (e t /%)=  + ∇· (e t V )  (b) %   (e t /%)= %  + %   V /2 .
                                   Dt         ∂t                     Dt          Dt    Dt
              I 36. Show that the conservation law for heat flow is given by
                                                  ∂T
                                                     + ∇· (T~v − κ∇T )= S Q
                                                   ∂t
                                                                                 ~
               where κ is the thermal conductivity of the material, T is the temperature, J advection = T~v,
                ~
               J conduction = −κ∇T and S Q is a source term. Note that in a solid material there is no flow and so ~v =0and
   324   325   326   327   328   329   330   331   332   333   334