Page 340 - Intro to Tensor Calculus
P. 340

334




















































                                           Figure 2.6-4. Sphere S containing sphere Σ.

                   Applying the Gauss divergence theorem to the top half of figure 2.6-4 gives

                                 ZZ             ZZ              ZZ              ZZZ
                                        i T
                                                                                       i
                                      F n dσ +       F n i  dσ +     F n i  dσ =      F dτ            (2.6.30)
                                                       i b T
                                                                      i Σ T
                                          i
                                                                                       ,i
                                    S T           S b1            Σ T              V T
               where the n i are the unit outward normals to the respective surfaces S T , S b1 and Σ T . Applying the Gauss
               divergence theorem to the bottom half of the sphere in figure 2.6-4 gives
                                 ZZ             ZZ              ZZ              ZZZ
                                        i B
                                                                                        i
                                                                      i Σ B
                                                       i b B
                                      F n dσ +       F n i  dσ +     F n i  dσ =      F dτ            (2.6.31)
                                                                                        ,i
                                          i
                                    S B           S b2            Σ B               V B
               Observe that the unit normals to the surfaces S b1 and S b2 are equal and opposite in sign so that adding the
               equations (2.6.30) and (2.6.31) we obtain
                                         ZZ           ZZ             ZZZ
                                                            i (1)
                                              i
                                                                                i
                                             F n i dσ +   F n i  dσ =         F dτ                    (2.6.32)
                                                                                ,i
                                           S            Σ               V T +V B
   335   336   337   338   339   340   341   342   343   344   345