Page 42 - Intro to Tensor Calculus
P. 42

38



























                                     Figure 1.2-1. Coordinate curves and coordinate surfaces.


                                r
               A small change in ~ is denoted
                                                                         r
                                                                 ∂~ r   ∂~      ∂~
                                                                                 r
                                       d~ = dx b e 1 + dy b e 2 + dz b e 3 =  du +  dv +  dw          (1.2.15)
                                        r
                                                                ∂u      ∂v      ∂w
               where
                                                 ∂~ r  ∂x     ∂y      ∂z
                                                    =    b e 1 +  b e 2 +  b e 3
                                                 ∂u    ∂u     ∂u      ∂u
                                                  r
                                                 ∂~    ∂x     ∂y     ∂z
                                                    =    b e 1 +  b e 2 +  b e 3                      (1.2.16)
                                                 ∂v    ∂v     ∂v     ∂v
                                                  r
                                                 ∂~    ∂x      ∂y     ∂z
                                                    =     b e 1 +  b e 2 +  b e 3 .
                                                 ∂w    ∂w     ∂w      ∂w
               In terms of the u, v, w coordinates, this change can be thought of as moving along the diagonal of a paral-
                                              r
                                                      r
                                             ∂~      ∂~           ∂~
                                                                   r
               lelepiped having the vector sides  du,   dv,  and     dw.
                                             ∂u      ∂v           ∂w
                   Assume u = u(x, y, z) is defined by equation (1.2.9) and differentiate this relation to obtain
                                                      ∂u      ∂u      ∂u
                                                 du =    dx +    dy +    dz.                          (1.2.17)
                                                      ∂x      ∂y      ∂z
               The equation (1.2.15) enables us to represent this differential in the form:
                                  du = grad u · d~
                                              r

                                                                r
                                                        r
                                               ∂~      ∂~      ∂~
                                                r
                                  du = grad u ·   du +    dv +    dw
                                               ∂u      ∂v     ∂w                                      (1.2.18)

                                               ∂~                ∂~ r              ∂~ r
                                                r
                                  du =  grad u ·    du + gradu ·     dv + grad u ·      dw.
                                               ∂u                ∂v                ∂w
               By comparing like terms in this last equation we find that
                                          ~ 1 ~
                                                                        ~ 1 ~
                                                         ~ 1 ~
                                          E · E 1 =1,    E · E 2 =0,    E · E 3 =0.                   (1.2.19)
               Similarly, from the other equations in equation (1.2.9) which define v = v(x, y, z),  and w = w(x, y, z)it
               can be demonstrated that

                                                 r
                                                                                    r
                                                ∂~               ∂~ r              ∂~
                                  dv =  grad v ·    du + grad v ·     dv + grad v ·     dw            (1.2.20)
                                               ∂u                ∂v                ∂w
   37   38   39   40   41   42   43   44   45   46   47