Page 43 - Intro to Tensor Calculus
P. 43

39



               and

                                                                                     r
                                                                  r
                                                r
                                               ∂~                ∂~                ∂~
                                 dw =   grad w ·    du + gradw ·      dv + grad w ·     dw.           (1.2.21)
                                               ∂u                ∂v                ∂w
               By comparing like terms in equations (1.2.20) and (1.2.21) we find
                                                                        ~ 2 ~
                                          ~ 2 ~
                                                         ~ 2 ~
                                          E · E 1 =0,    E · E 2 =1,    E · E 3 =0
                                                                                                      (1.2.22)
                                          ~ 3 ~
                                                         ~ 3 ~
                                                                        ~ 3 ~
                                          E · E 1 =0,    E · E 2 =0,    E · E 3 =1.
               The equations (1.2.22) and (1.2.19) show us that the basis vectors defined by equations (1.2.12) and (1.2.13)
               are reciprocal.
                   Introducing the notation
                                           1  2  3                1  2  3
                                          (x ,x ,x )= (u, v, w)  (y ,y ,y )= (x, y, z)                (1.2.23)

               where the x s denote the generalized coordinates and the y s denote the rectangular Cartesian coordinates,
                          0
                                                                   0
               the above equations can be expressed in a more concise form with the index notation. For example, if
                                                                             1
                                          1
                                                                               2
                                                          i
                                                                          i
                                                               i
                                       i
                        i
                                             2
                            i
                                                                                  3
                                               3
                       x = x (x, y, z)= x (y ,y ,y ),  and y = y (u, v, w)= y (x ,x ,x ),  i =1, 2, 3  (1.2.24)
               then the reciprocal basis vectors can be represented
                                                            i
                                                   ~ i
                                                  E = gradx ,     i =1, 2, 3                          (1.2.25)
               and
                                                         ∂~ r
                                                    ~
                                                   E i =    ,   i =1, 2, 3.                           (1.2.26)
                                                        ∂x i
                                                                                       3
                                                                                    2
                                                                                 1
                                                                              r
                                                                          r
               We now show that these basis vectors are reciprocal. Observe that ~ = ~(x ,x ,x )with
                                                               r
                                                             ∂~    m
                                                         r
                                                        d~ =     dx                                   (1.2.27)
                                                             ∂x m
               and consequently
                                                  r
                                                 ∂~
                         i        i           i        m     ~ i ~     m    i   m
                       dx = grad x · d~r = gradx ·  m  dx  = E · E m dx  = δ dx ,      i =1, 2, 3     (1.2.28)
                                                                            m
                                                ∂x
               Comparing like terms in this last equation establishes the result that
                                                  ~ i ~
                                                            i
                                                  E · E m = δ ,  i, m =1, 2, 3                        (1.2.29)
                                                            m
               which demonstrates that the basis vectors are reciprocal.
   38   39   40   41   42   43   44   45   46   47   48