Page 63 - Intro to Tensor Calculus
P. 63

59



              I 10.  Consider the transformation equations

                                                        x = x(u, v, w)

                                                        y = y(u, v, w)
                                                        z = z(u, v, w)

               substituted into the position vector
                                                     r
                                                     ~ = x b e 1 + y b e 2 + z b e 3 .
               Define the basis vectors
                                                                 r
                                                                ∂~ ∂~r ∂~r
                                                     ~
                                                  ~
                                                         ~
                                                 (E 1 , E 2 , E 3 )=  ,  ,
                                                                ∂u ∂v ∂w
               with the reciprocal basis
                                         1                  1                   1
                                    ~ 1
                                           ~
                                                ~
                                                       ~ 2
                                                              ~
                                                                   ~
                                                                                  ~
                                                                                      ~
                                                                          ~ 3
                                   E =     E 2 × E 3 ,  E =   E 3 × E 1 ,  E =   E 1 × E 2 .
                                         V                  V                  V
               where
                                                                   ~
                                                               ~
                                                          ~
                                                      V = E 1 · (E 2 × E 3 ).
                                 ~ 3
                            ~ 2
                       ~ 1
               Let v = E · (E × E )and show that v · V =1.
              I 11.  Given the coordinate transformation
                                             x = −u − 2v    y = −u − v    z = z
                (a) Find and illustrate graphically some of the coordinate curves.
                (b) For ~ = ~(u, v, z) a position vector, define the basis vectors
                       r
                           r
                                                                   r
                                                     ∂~ r        ∂~           ∂~ r
                                                ~
                                                                         ~
                                                            ~
                                               E 1 =   ,    E 2 =   ,    E 3 =  .
                                                     ∂u          ∂v           ∂z
                                                                           ~ 1 ~ 2 ~ 3
                   Calculate these vectors and then calculate the reciprocal basis E , E , E .
                                                                                     i
                (c) With respect to the basis vectors in (b) find the contravariant components A associated with the vector
                                                     ~
                                                     A = α 1 b e 1 + α 2 b e 2 + α 3 b e 3
                   where (α 1 ,α 2 ,α 3 ) are constants.
                                                                          ~
                (d) Find the covariant components A i associated with the vector A given in part (c).
                                                                         ij
                (e) Calculate the metric tensor g ij and conjugate metric tensor g .
                (f) From the results (e), verify that g ij g jk  = δ k
                                                         i
                (g) Use the results from (c)(d) and (e) to verify that A i = g ik A k
                                                                i    ik
                (h) Use the results from (c)(d) and (e) to verify that A = g A k
                                                                                   ~
                                                                                ~
                                                 ~
                                                                                      ~
                (i) Find the projection of the vector A on unit vectors in the directions E 1 , E 2 , E 3 .
                                                 ~
                                                                             ~ 1 ~ 2 ~ 3
                (j) Find the projection of the vector A on unit vectors the directions E , E , E .
   58   59   60   61   62   63   64   65   66   67   68