Page 67 - Intro to Tensor Calculus
P. 67

63



                                   1
                                      2
                                            N
                           i
                                i
              I 40.   Let A = A (x ,x ,...,x ) denote the components of an absolute contravariant tensor. Form the
                         i
               quantity B =  ∂A i                i
                             ∂x j and determine if B transforms like a tensor.
                         j                       j
                                                                                           ∂A i   ∂A j
              I 41.    Let A i denote the components of a covariant vector. (a) Show that a ij =  −    are the
                                                                                            ∂x j  ∂x i
                                                              ∂a ij  ∂a jk  ∂a ki
               components of a second order tensor. (b) Show that  +     +      =0.
                                                              ∂x k   ∂x i   ∂x j
                                i
              I 42.  Show that x = Ke ijk A j B k ,with K 6= 0 and arbitrary, is a general solution of the system of equations
                   i
                            i
               A i x =0,B i x =0,i =1, 2, 3. Give a geometric interpretation of this result in terms of vectors.
                                      ~
              I 43.   Given the vector A = y b e 1 + z b e 2 + x b e 3 where b e 1 , b e 2 , b e 3 denote a set of unit basis vectors which
                                                      ~
                                                                     ~
                                                                                        ~
               define a set of orthogonal x, y, z axes. Let E 1 =3 b e 1 +4 b e 2, E 2 =4 b e 1 +7 b e 2 and E 3 = b e 3 denote a set of
               basis vectors which define a set of u, v, w axes. (a) Find the coordinate transformation between these two
                                                                                                           ~
                                                           ~ 1 ~ 3 ~ 3
               sets of axes. (b) Find a set of reciprocal vectors E , E , E . (c) Calculate the covariant components of A.
                                                         ~
               (d) Calculate the contravariant components of A.
              I 44.  Let A = A ij b e i b e j denote a dyadic. Show that
                    A : A c = A 11 A 11 + A 12 A 21 + A 13 A 31 + A 21 A 12 + A 22 A 22 + A 23 A 32 + A 31 A 13 + A 32 A 23 + A 23 A 33
                                                                                                   ~ ~
                                    ~
                                              ~
                                                        ~
                                                                                           ~ ~
                          ~
              I 45.   Let A = A i b e i , B = B i b e i , C = C i b e i , D = D i b e i denote vectors and let φ = AB, ψ = CD denote
               dyadics which are the outer products involving the above vectors. Show that the double dot product satisfies
                                                      ~ ~
                                                                           ~
                                                                        ~
                                                           ~ ~
                                                                  ~ ~
                                               φ : ψ = AB : CD =(A · C)(B · D)
              I 46.  Show that if a ij is a symmetric tensor in one coordinate system, then it is symmetric in all coordinate
               systems.
              I 47.  Write the transformation laws for the given tensors. (a)  A k  (b)  A ij  (c)  A ijk
                                                                          ij         k          m
                                         ∂x j             ∂x  j
              I 48.   Show that if A i = A j  i  ,then A i = A j  ∂x i . Note that this is equivalent to interchanging the bar
                                         ∂x
               and unbarred systems.
              I 49.
                (a) Show that under the linear homogeneous transformation
                                                              1      2
                                                         x 1 =a x 1 + a x 2
                                                              1      1
                                                              1      2
                                                         x 2 =a x 1 + a x 2
                                                              2
                                                                     2
                   the quadratic form
                                      2
                                                                                       2
                     Q(x 1 ,x 2 )= g 11 (x 1 ) +2g 12x 1 x 2 + g 22 (x 2 ) 2  becomes  Q(x 1 , x 2 )= g (x 1 ) +2g x 1 x 2 + g (x 2 ) 2
                                                                                                      22
                                                                                  11
                                                                                            12
                                              j
                                                              j
                                                            i
                                  j i
                                                  j i
                                            i
                   where g ij  = g 11 a a + g 12(a a + a a )+ g 22 a a .
                                                  1 2
                                            1 2
                                  1 1
                                                            2 2
                                        2
                (b) Show F = g 11 g 22 −(g 12 ) is a relative invariant of weight 2 of the quadratic form Q(x 1 ,x 2 ) with respect
                                                                                    2
                   to the group of linear homogeneous transformations. i.e. Show that F =∆ F where F = g g −(g ) 2
                                                                                                          12
                                                                                                  11 22
                                    2 1
                             1 2
                   and ∆ = (a a − a a ).
                             1 2
                                    1 2
   62   63   64   65   66   67   68   69   70   71   72