Page 72 - Intro to Tensor Calculus
P. 72

67



                                                     r
                                     r
                                    ∂~      ∂~ r   ∂~
               and consequently d~ =   du +   dv +    dw, where
                                r
                                    ∂u      ∂v     ∂w
                                                   ∂~ r  ∂x     ∂y      ∂z
                                              ~
                                              E 1 =   =     b e 1 +  b e 2 +  b e 3
                                                   ∂u    ∂u     ∂u      ∂u
                                                    r
                                                   ∂~    ∂x     ∂y      ∂z
                                              ~
                                              E 2 =   =     b e 1 +  b e 2 +  b e 3                   (1.3.11)
                                                   ∂v    ∂v     ∂v      ∂v
                                                    r
                                                   ∂~    ∂x      ∂y      ∂z
                                              ~
                                             E 3 =    =     b e 1 +  b e 2 +  b e 3 .
                                                   ∂w    ∂w      ∂w      ∂w
               are tangent vectors to the coordinate curves. The element of arc length in the curvilinear coordinates is
                                                                   r
                                                               r
                                                 r
                                                ∂~  ∂~ r      ∂~  ∂~        ∂~  ∂~ r
                                                                             r
                                    2
                                  ds = d~r · d~r =  ·  dudu +    ·   dudv +    ·   dudw
                                                ∂u ∂u         ∂u ∂v         ∂u ∂w
                                                 r
                                                                            r
                                                                   r
                                                     r
                                                ∂~  ∂~        ∂~ r  ∂~     ∂~   ∂~
                                                                                 r
                                             +    ·    dvdu +   ·   dvdv +    ·    dvdw               (1.3.12)
                                                ∂v ∂u         ∂v ∂v        ∂v ∂w
                                                ∂~  ∂~         ∂~  ∂~        ∂~   ∂~
                                                                r
                                                     r
                                                                    r
                                                                              r
                                                 r
                                                                                   r
                                             +     ·   dwdu +     ·   dwdv +    ·    dwdw.
                                                ∂w ∂u         ∂w ∂v          ∂w ∂w
                   Utilizing the summation convention, the above can be expressed in the index notation. Define the
               quantities
                                             r
                                                 r
                                            ∂~  ∂~           ∂~ r  ∂~ r        ∂~ r  ∂~ r
                                      g 11 =   ·        g 12 =  ·        g 13 =  ·
                                            ∂u ∂u            ∂u ∂v            ∂u ∂w
                                            ∂~  ∂~           ∂~ r  ∂~          ∂~  ∂~
                                                                                    r
                                             r
                                                                                r
                                                 r
                                                                   r
                                      g 21 =   ·        g 22 =  ·        g 23 =  ·
                                            ∂v ∂u            ∂v ∂v            ∂v ∂w
                                            ∂~   ∂~           ∂~ r  ∂~         ∂~ r  ∂~
                                             r
                                                                                    r
                                                                   r
                                                  r
                                      g 31 =   ·        g 32 =   ·       g 33 =   ·
                                            ∂w ∂u            ∂w ∂v            ∂w ∂w
                       1
                                2
                                         3
               and let x = u,  x = v,  x = w. Then the above element of arc length can be expressed as
                                                    i
                                                                  j
                                                               i
                                         2
                                                ~
                                            ~
                                                       j
                                       ds = E i · E j dx dx = g ij dx dx ,  i, j =1, 2, 3
               where
                                                   ∂~ r  ∂~ r  ∂y m  ∂y m
                                          ~
                                              ~
                                     g ij = E i · E j =  ·  =         ,    i, j free indices          (1.3.13)
                                                                i
                                                   ∂x i  ∂x j  ∂x ∂x j
               are called the metric components of the curvilinear coordinate system. The metric components may be
               thought of as the elements of a symmetric matrix, since g ij = g ji . In the rectangular coordinate system
                                                       2
                                                             2
                                                                   2
                                                                        2
               x, y, z, the element of arc length squared is ds = dx + dy + dz . In this space the metric components are
                                                                   
                                                             10    0
                                                      g ij =    01  0    .
                                                             00    1
   67   68   69   70   71   72   73   74   75   76   77