Page 74 - Intro to Tensor Calculus
P. 74

69
























                                              Figure 1.3-1. Cylindrical coordinates.



                 2. Cylindrical coordinates (r, θ, z)

                                               x = r cos θ  r ≥ 0           h 1 =1
                                               y = r sin θ  0 ≤ θ ≤ 2π      h 2 = r

                                               z = z       −∞ <z < ∞        h 3 =1

                   The coordinate curves, illustrated in the figure 1.3-1, are formed by the intersection of the coordinate
                   surfaces
                                                        2
                                                   2
                                                            2
                                                  x + y = r ,     Cylinders
                                                      y/x =tan θ    Planes
                                                        z = Constant    Planes.
                 3. Spherical coordinates (ρ, θ, φ)


                                            x = ρ sin θ cos φ  ρ ≥ 0       h 1 =1
                                            y = ρ sin θ sin φ  0 ≤ θ ≤ π   h 2 = ρ
                                            z = ρ cos θ     0 ≤ φ ≤ 2π     h 3 = ρ sin θ

                   The coordinate curves, illustrated in the figure 1.3-2, are formed by the intersection of the coordinate
                   surfaces
                                                       2
                                                           2
                                                  2
                                                 x + y + z = ρ  2    Spheres
                                                           2
                                                                  2
                                                       2
                                                      x + y =tan θz  2    Cones
                                                           y = x tan φ Planes.
                 4. Parabolic cylindrical coordinates (ξ, η, z)
                                                                               p
                                                                                  2
                                         x = ξη          −∞ <ξ < ∞        h 1 =  ξ + η 2
                                             1  2    2                         p
                                                                                  2
                                         y =  (ξ − η )   −∞ <z < ∞        h 2 =  ξ + η 2
                                             2
                                         z = z           η ≥ 0            h 3 =1
   69   70   71   72   73   74   75   76   77   78   79