Page 75 - Intro to Tensor Calculus
P. 75

70



























                                               Figure 1.3-2. Spherical coordinates.


                   The coordinate curves, illustrated in the figure 1.3-3, are formed by the intersection of the coordinate
                   surfaces
                                                           ξ 2
                                               2      2
                                              x = −2ξ (y −   )    Parabolic cylinders
                                                            2
                                                          η 2
                                               2
                                                    2
                                              x =2η (y +    )    Parabolic cylinders
                                                          2
                                               z = Constant    Planes.

















                                   Figure 1.3-3. Parabolic cylindrical coordinates in plane z =0.



                 5. Parabolic coordinates (ξ, η, φ)

                                           x = ξη cos φ   ξ ≥ 0          h 1 =  p ξ + η 2
                                                                                2
                                           y = ξη sin φ   η ≥ 0          h 2 =  p ξ + η 2
                                                                                2
                                               1  2   2
                                           z =  (ξ − η )  0 <φ < 2π      h 3 = ξη
                                               2
   70   71   72   73   74   75   76   77   78   79   80