Page 76 - Intro to Tensor Calculus
P. 76

71



                   The coordinate curves, illustrated in the figure 1.3-4, are formed by the intersection of the coordinate
                   surfaces
                                                                 ξ 2
                                                2   2      2
                                               x + y = −2ξ (z −    )   Paraboloids
                                                                 2
                                                               η 2
                                                2   2     2
                                               x + y =2η (z +    )    Paraboloids
                                                                2
                                                    y = x tan φ   Planes.




































                                          Figure 1.3-4. Parabolic coordinates, φ = π/4.




                 6. Elliptic cylindrical coordinates (ξ, η, z)
                                                                            q
                                                                                        2
                                                                                 2
                                      x =cosh ξ cos η  ξ ≥ 0           h 1 =  sinh ξ +sin η
                                                                            q
                                      y = sinh ξ sin η  0 ≤ η ≤ 2π               2      2
                                                                       h 2 =  sinh ξ +sin η
                                      z = z           −∞ <z < ∞
                                                                       h 3 =1
                   The coordinate curves, illustrated in the figure 1.3-5, are formed by the intersection of the coordinate
                   surfaces
                                              x 2  +   y 2  = 1    Elliptic cylinders
                                                2
                                                         2
                                            cosh ξ   sinh ξ
                                                x 2    y 2
                                                    −   2   = 1    Hyperbolic cylinders
                                                 2
                                              cos η   sin η
                                                          z = Constant    Planes.
   71   72   73   74   75   76   77   78   79   80   81