Page 80 - Intro to Tensor Calculus
P. 80

75






























                                           Figure 1.3-9. Prolate spheroidal coordinates



                11. Oblate spheroidal coordinates (ξ, η, φ)
                                                                           2
                                  x = a cosh ξ cos η cos φ,  ξ ≥ 0        h = h 2 2
                                                                           1
                                                           π       π       2   2    2       2
                                  y = a cosh ξ cos η sin φ,  −  ≤ η ≤     h = a (sinh ξ +sin η)
                                                                           2
                                                           2        2
                                                                           2   2    2    2
                                  z = a sinh ξ sin η,  0 ≤ φ ≤ 2π         h = a cosh ξ cos η
                                                                           3
                   The coordinate curves, illustrated in the figure 1.3-10, are formed by the intersection of the coordinate
                   surfaces
                                     x 2         y 2         z 2
                                           +           +           =1,     Oblate ellipsoids
                                  (a cosh ξ) 2  (a cosh ξ) 2  (a sinh ξ) 2
                                        x 2       y 2        z 2
                                             +          −          =1,     One-sheet hyperboloids
                                     (a cos η) 2  (a cos η) 2  (a sin η) 2
                                                                 y = x tan φ,   Planes.

                12. Toroidal coordinates (u, v, φ)
                                         a sinh v cos φ                 h = h 2
                                                                         2
                                     x =             ,  0 ≤ u< 2π        1    2
                                         cosh v − cos u                            a 2
                                                                         2
                                         a sinh v sin φ                 h =
                                                                         2
                                     y =             ,  −∞ <v < ∞            (cosh v − cos u) 2
                                         cosh v − cos u                          2    2
                                            a sin u                      2      a sinh v
                                     z =             ,  0 ≤ φ< 2π       h =               2
                                                                         3
                                         cosh v − cos u                      (cosh v − cos u)
                   The coordinate curves, illustrated in the figure 1.3-11, are formed by the intersection of the coordinate
                   surfaces
                                                           a cos u    2  a 2
                                               2   2
                                              x + y + z −           =    2  ,   Spheres
                                                            sin u     sin u
                                                               2         2
                                           p           cosh v     2     a
                                              2
                                                   2
                                             x + y − a         + z =      2  ,   Torus
                                                       sinh v         sinh v
                                                                  y = x tan φ,   planes
   75   76   77   78   79   80   81   82   83   84   85