Page 31 -
P. 31

17
                                                  1.4 Cauchy Problems
        and
                                            1
                                     1
                         g(s)= c 2 + φ(s) −
                                            2
                                     2
        where c 1 and c 2 are constants of integration. From (1.40) we note that
                                φ(x)= f(x)+ g(x),
        and thus by adding (1.43) and (1.44), we observe that
                                   c 1 + c 2 =0.   0 s  ψ(θ)dθ,     (1.44)
        Putting s = x + t in (1.43) and s = x − t in (1.44), it follows from (1.39)
        that
                                          1     x+t      1     x−t
                    1
           u(x, t)=   φ(x + t)+ φ(x − t) +       ψ(θ)dθ −       ψ(θ)dθ,
                    2                     2              2
                                             0              0
        or
                                                   x+t

                                               1
                         1
                u(x, t)=   φ(x + t)+ φ(x − t) +       ψ(θ)dθ.       (1.45)
                         2                     2  x−t
        This formula is referred to as the d’Alembert solution. Let us use it to
        compute the solution of one Cauchy problem.
        Example 1.4 Consider the Cauchy problem
                             u tt = u xx ,  x ∈ R ,t > 0 ,
                          u(x, 0)=0 ,      x ∈ R ,                  (1.46)
                         u t (x, 0) = cos(x) ,  x ∈ R .
        Since φ(x)=0 and ψ(x) = cos(x), it follows by (1.45) that
                                 1     x+t
                         u(x, t)=       cos(θ)dθ
                                 2  x−t
                                         x+t
                                 1
                               =   sin(θ)
                                 2       x−t
                                 1
                               =   sin(x + t) − sin(x − t) ,
                                 2
        so
                               u(x, t) = cos(x) sin(t).             (1.47)

        It is straightforward to check by direct computation that (1.47) in fact
        solves (1.46).
   26   27   28   29   30   31   32   33   34   35   36