Page 115 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 115

102                                                     Direct methods

                       and therefore, since v ∈ C 0 ∞  (Ω),wehave
                                  ZZ                 ZZ
                                                         h                 i
                                                          ¡   ¢
                                      det ∇wv dxdy =       ϕψ   v − (ϕψ ) v dxdy
                                                             y x       x y
                                    Ω                  Ω
                       and hence (3.9) after integration by parts.
                          The result (3.8) then easily follows. Indeed from Rellich theorem (Theorem
                                                                      ν
                                          ν
                                                                                ∞
                       1.43) we have, since ϕ  ϕ in W 1,p  and p> 2,that ϕ → ϕ in L . Combining
                                                         ν
                                                                             p
                       this observation with the fact that ψ ,ψ ν y   ψ ,ψ in L we deduce (cf.
                                                                       y
                                                         x
                                                                   x
                       Exercise 1.3.3) that
                                                                      p
                                                     ν
                                            ν
                                                   ν
                                               ν
                                           ϕ ψ ,ϕ ψ  ϕψ ,ϕψ in L .                     (3.11)
                                               x     y      x    y
                                                                                  ν
                       Since v x ,v y ∈ C 0 ∞  ⊂ L p 0  we deduce from (3.9), applied to w = u ,and from
                       (3.11) that
                                     ZZ                   ZZ
                                                                            ¤
                                              ν
                                 lim     det ∇u vdxdy = −     £ ϕψ v x − ϕψ v y dxdy .
                                                                         x
                                                                 y
                                ν→∞
                                       Ω                    Ω
                       Using again (3.9), applied to w = u, we have indeed obtained the claimed result
                       (3.8).
                          Step 2. We now show that (3.8) still holds under the further hypothesis
                                                                                  ¡     ¢
                                                                        ν
                                                                                       2
                       v ∈ C ∞  (Ω), but considering now the general case, i.e. u ,u ∈ W  1,p  Ω; R .
                            0
                          In fact (3.9) continues to hold under the weaker hypothesis that v ∈ C 0 ∞  (Ω)
                                    ¡    ¢
                                        2
                       and w ∈ W  1,p  Ω; R ; of course the proof must be different, since this time we
                                              ¡     ¢
                                                   2
                       only know that w ∈ W  1,p  Ω; R . Let us postpone for a moment the proof of
                       this fact and observe that if (3.9) holds for w ∈ W  1,p  ¡ Ω; R 2 ¢  then, with exactly
                       the same argument as in the previous step, we get (3.8) under the hypotheses
                                                 ¡
                                                      ¢
                                                      2
                                       ν
                       v ∈ C ∞  (Ω) and u ,u ∈ W 1,p  Ω; R .
                            0
                          We now prove the above claim and we start by regularizing w ∈ W  1,p  ¡ Ω; R 2 ¢

                       appealing to Theorem 1.34. We therefore find for every  > 0,afunction w =
                                   ¡

                                        ¢

                       (ϕ ,ψ ) ∈ C 2  Ω; R 2  so that

                                        kw − w k W 1,p ≤   and kw − w k L ∞ ≤  .
                       Since p ≥ 2 we can find (cf. Exercise 3.5.4) a constant α 1 (independent of  )so
                       that

                                            kdet ∇w − det ∇w k  p/2 ≤ α 1  .           (3.12)
                                                             L
                       It is also easy to see that we have, for α 2 a constant (independent of  ),
                                     °          °
                                                                     x L p ≤ α 2
                                     ° ϕψ − ϕ ψ   °  ≤ α 2  , kϕψ − ϕ ψ k              (3.13)
                                        y      y L p          x
                       since, for example, the first inequality follows from
                              °          °           °       °     °  °
                                                     °
                              ° ϕψ − ϕ ψ   °  ≤ kϕk L ∞ ψ − ψ   °  + ψ   °  kϕ − ϕ k L ∞ .
                                                                   °
                                 y      y L p           y   y L p    y L p
   110   111   112   113   114   115   116   117   118   119   120