Page 119 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 119

106                                                     Direct methods

                                                           2            2×2
                       Exercise 3.5.1 Show that f (ξ)= (det ξ) ,where ξ ∈ R  ,isnot convex.
                                                      2
                       Exercise 3.5.2 Show that if Ω ⊂ R is a bounded open set with Lipschitz bound-
                                            ¡
                                                  ¢
                                                 2
                       ary and if u ∈ v + W 1,p  Ω; R ,with p ≥ 2,then
                                         0
                                         ZZ                ZZ
                                             det ∇udxdy =      det ∇vdxdy .
                                            Ω                Ω
                                                                ¡    ¢
                       Suggestion: Prove first the result for u, v ∈ C 2  Ω; R 2  with u = v on ∂Ω.
                                                2
                       Exercise 3.5.3 Let Ω ⊂ R be a bounded open set with Lipschitz boundary,
                                ¡
                                      ¢
                                     2
                       u 0 ∈ W 1,p  Ω; R ,with p ≥ 2,and
                                    ½       ZZ                                   ¾
                                                                        1,p  ¡  2 ¢
                            (P)  inf I (u)=     det ∇u (x) dx : u ∈ u 0 + W  Ω; R  = m.
                                                                       0
                                               Ω
                       Write the Euler-Lagrange equation associated to (P). Is the result totally sur-
                       prising?
                                                          ¢
                                                         2
                       Exercise 3.5.4 Let u, v ∈ W 1,p  ¡ Ω; R ,with p ≥ 2. Show that there exists
                       α> 0 (depending only on p) so that
                              kdet ∇u − det ∇vk L p/2 ≤ α (k∇uk L p + k∇vk L p) k∇u −∇vk L p .
                                               2
                       Exercise 3.5.5 Let Ω ⊂ R be a bounded open set with Lipschitz boundary. We
                       have seen in Lemma 3.23 that, if p> 2,then

                                                              ν
                                 ν
                                u  u in W  1,p  ¡ Ω; R 2 ¢  ⇒ det ∇u   det ∇u in L p/2  (Ω) .
                          (i) Show that the result is, in general, false if p =2. To achieve this goal
                                                  2
                       choose, for example, Ω =(0, 1) and
                                                   1        ν
                                         ν
                                        u (x, y)= √ (1 − y) (sin νx, cos νx) .
                                                    ν
                                                                                      ¡    ¢
                                                                             ν
                          (ii) Show, using Rellich theorem (Theorem 1.43), that if u ,u ∈ C 2  Ω; R 2
                       and if p> 4/3 (so in particular for p =2), then
                                  ν
                                                               ν
                                                                              0
                                u  u in W   1,p  ¡ Ω; R 2 ¢  ⇒ det ∇u   det ∇u in D (Ω) .
                          (iii) This last result is false if p ≤ 4/3,see Dacorogna-Murat[34].
                                             ©              ª
                                                    2
                       Exercise 3.5.6 Let Ω = x ∈ R : |x| < 1 and u (x)= x/ |x|.
                                               ¡    ¢
                          (i) Show that u ∈ W 1,p  Ω; R 2  for every 1 ≤ p< 2 (observe, however, that
                                         0
                       u/∈ W  1,2  and u/∈ C ).
   114   115   116   117   118   119   120   121   122   123   124