Page 145 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 145

132                                                   Minimal surfaces

                          (i) The mean curvature of Σ,denoted by H,at a point p ∈ Σ (p = v (x, y))
                       is given by
                                                   1 EN − 2FM + GL
                                              H =                    .
                                                   2    EG − F 2
                          (ii) The Gaussian curvature of Σ, denoted by K,at a point p ∈ Σ (p = v (x, y))
                       is by definition
                                                       LN − M  2
                                                  K =           .
                                                       EG − F  2
                          (iii) The principal curvatures, k 1 and k 2 ,are defined as
                                              p                      p
                                                                         2
                                                  2
                                     k 1 = H +  H − K and k 2 = H −    H − K
                       so that H =(k 1 + k 2 ) /2 and K = k 1 k 2 .
                                                       2
                       Remark 5.4 (i) We always have H ≥ K.
                          (ii) For a nonparametric surface v (x, y)= (x, y, u (x, y)), we have
                                          2
                                                               2
                                                                        2
                                                                                2
                              E  =1 + u ,F = u x u y ,G =1 + u ,EG − F =1 + u + u    2
                                          x                    y                x    y
                                     (−u x , −u y , 1)      u xx
                                 =                                  ,
                              e 3    q            ,L = q
                                                              2
                                            2
                                       1+ u + u 2 y      1+ u + u 2 y
                                                              x
                                            x
                                          u xy              u yy
                             M   =   q            ,N = q
                                                              2
                                            2
                                       1+ u + u 2         1+ u + u 2
                                            x   y             x    y
                       and hence
                               ¡    2  ¢               ¡    2  ¢                     2
                                1+ u y  u xx − 2u x u y u xy + 1+ u x  u yy  u xx u yy − u xy
                          H =                                                         ¢ .
                                          ¡          ¢ 3/2        and K = ¡            2
                                                                                 2
                                               2
                                        2 1+ u + u  2                       1+ u + u 2
                                               x    y                            x   y
                          (iii) For a nonparametric surface in R n+1  given by x n+1 = u (x 1 ,..., x n ),we
                       have that the mean curvature is defined by (cf. (A.14) in Gilbarg-Trudinger [49])
                                             ⎡           ⎤
                                       n
                                     1  X  ∂       u x i
                             H   =           ⎣ q         ⎦
                                     n    ∂x i          2
                                       i=1       1+ |∇u|
                                                    ⎡                               ⎤
                                                                       n
                                     1  ³      2 ´ −  2       2 ´     X
                                                   3 ³
                                 =      1+ |∇u|     ⎣  1+ |∇u|  ∆u −     u x i x j x i x j  ⎦  .
                                                                            u u
                                     n
                                                                     i,j=1
                       In terms of the operator M defined in the introduction of the present chapter,
                       we can write
                                                      ³        ´ 3
                                                              2  2
                                              Mu = n 1+ |∇u|      H.
   140   141   142   143   144   145   146   147   148   149   150