Page 155 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 155

142                                                   Minimal surfaces

                                               ¡ ¢
                          Step 3.1. Let λ, µ ∈ C ∞  Ω ,to be chosen later,and let   ∈ R be sufficiently
                       small so that the map
                                 µ    ¶             µ          ¶   µ             ¶
                                   x 0                ϕ (x, y)       x +  λ (x, y)
                                                        1
                                        = ϕ (x, y)=              =
                                    y 0               ϕ (x, y)       y +  µ (x, y)
                                                        2
                                                                                      ¡ ¢
                       is a diffeomorphism from Ω onto a simply connected domain Ω = ϕ Ω .We

                       denote its inverse by ψ and we find that
                            µ    ¶              µ           ¶   µ                    ¶
                               x                  ψ (x ,y )       x −  λ (x ,y )+ o ( )
                                                       0
                                                         0
                                                                             0
                                                                           0
                                                                   0
                                                    1
                                   = ψ (x ,y )=               =
                                            0
                                         0
                                                                   0
                                                                           0
                                                         0
                                                       0
                               y                  ψ (x ,y )       y −  µ (x ,y )+ o ( )
                                                                             0
                                                    2
                       where o (t) stands for a function f = f (t) so that f (t) /t tends to 0 as t tends
                       to 0. We therefore have




                                           0
                                                    0
                                    ϕ (ψ (x ,y )) = (x ,y ) and ψ (ϕ (x, y)) = (x, y)
                                                       0
                                              0
                       moreover the Jacobian is given by
                                                                        ¢
                                                      ¡

                                   det ∇ϕ (x, y)= 1 +   λ x (x, y)+ µ (x, y) + o ( ) .  (5.11)
                                                                  y
                       We now change the independent variables and write


                                                  0
                                                               0
                                                                  0
                                                     0
                                              u (x ,y )= v (ψ (x ,y )) .
                       We find that
                                                     ∂                         ∂


                                                            0
                                                                            0
                                0
                                                                         0
                                                                                      0
                              0
                                                              0
                                                 0
                         u 0 (x ,y )= v x (ψ (x ,y ))  ψ (x ,y )+ v y (ψ (x ,y ))  ψ (x ,y )
                                               0
                                                                                         0
                                                                                   2
                                                        1
                          x
                                                    ∂x 0                      ∂x 0





                                    = v x (ψ ) −   [v x (ψ ) λ x (ψ )+ v y (ψ ) µ (ψ )] + o ( )
                                                                        x
                       and similarly
                                                                              ¤
                                                  £






                                    0
                                  0
                             u 0 (x ,y )= v y (ψ ) −   v x (ψ ) λ y (ψ )+ v y (ψ ) µ (ψ ) + o ( ) .
                                                                         y
                              y
                       This leads to
                                                2
                                                    ¯
                                                    ¯

                                            0
                                       |u 0 (x ,y )| + u 0 (x ,y ) ¯ 2
                                               0
                                                         0
                                                            0 ¯
                                        x
                                                      y
                                               2         2
                                   = |v x (ψ )| + |v y (ψ )|
                                          h                                i

                                                  2

                                                                   2


                                       −2  |v x (ψ )| λ x (ψ )+ |v y (ψ )| µ (ψ )
                                                                      y




                                       −2  [hv x (ψ ); v y (ψ )i (λ y (ψ )+ µ (ψ ))] + o ( ) .
                                                                     x
   150   151   152   153   154   155   156   157   158   159   160