Page 190 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 190

Chapter 1: Preliminaries                                          177

                                                  p
                The first one guarantees that ψ ∈ L (B R ) and the second one that ψ ∈
                W 1,2  (B R ).The fact that ψ/∈ L ∞  (B R ) is obvious.
                   3) We have, denoting by δ ij the Kronecker symbol, that

                                           2
                                ∂u i  δ ij |x| − x i x j    2  n − 1
                                    =              =⇒ |∇u| =         .
                                             3                    2
                                ∂x j      |x|                   |x|
                We therefore find
                             Z                             Z  1
                                       p           p/2         n−1−p
                                |∇u (x)| dx =(n − 1)  σ n−1   r     dr .
                               Ω                            0
                This quantity is finite if and only if p ∈ [1,n).
                Exercise 1.4.2. The inclusion AC ([a, b]) ⊂ C ([a, b]) is easy. Indeed by defin-
                ition any function in AC ([a, b]) is uniformly continuous in (a, b) and therefore
                can be continuously extended to [a, b].
                   Let us now discuss the second inclusion, namely W 1,1  (a, b) ⊂ AC ([a, b]).
                Let u ∈ W 1,1  (a, b). We know from Lemma 1.38 that

                                                    Z
                                                      b k
                                                         0
                                     u (b k ) − u (a k )=  u (t) dt .
                                                     a k
                We therefore find
                                                       Z
                                 X                  X    b k
                                                             0
                                    |u (b k ) − u (a k )| ≤  |u (t)| dt .
                                  k                  k  a k
                Let E = ∪ k (a k ,b k ). A classical property of Lebesgue integral (see Exercise
                                       1
                1.3.7) asserts that if u ∈ L , then, for every  > 0,there exists δ> 0 so that
                                   0
                                                           Z
                                         X
                                meas E =    |b k − a k | <δ ⇒  |u | <  .
                                                               0
                                                            E
                                         k
                The claim then follows.
                Exercise 1.4.3. This follows from Hölder inequality, since
                                       x           ⎛  x         ⎞ 1 ⎛  x   ⎞ 1
                                       Z             Z            p  Z       p 0
                                                             p           0
                                           0             0              p
                     |u (x) − u (y)| ≤   |u (t)| dt ≤  ⎝  |u (t)| dt ⎠ ⎝  1 dt ⎠
                                       y             y               y
                                       ⎛           ⎞ 1
                                                     p
                                         x Z
                                                p            1
                                            0
                                   ≤   ⎝   |u (t)| dt ⎠  |x − y|  p 0
                                         y
   185   186   187   188   189   190   191   192   193   194   195