Page 185 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 185

172                                            Solutions to the Exercises

                       Rewriting the integral we have
                                  Z                Z                Z
                                     (u ν v ν − uv) ϕ =  u ν (v ν − v) ϕ +  (u ν − u) vϕ .
                                   Ω                Ω                Ω
                       Since (v ν − v) → 0 in L p 0  and ku ν k L p ≤ K, wededucefromHölderinequality
                       that the first integral tends to 0. The second one also tends to 0 since u ν −u  0
                           p
                       in L and vϕ ∈ L p 0  (this follows from the hypotheses v ∈ L p 0  and ϕ ∈ L ).
                                                                                      ∞
                          Let us show that the result is, in general, false if v ν  v in L p 0  (instead of
                                 p
                                  0
                       v ν → v in L ). Choose p = p =2 and u ν (x)= v ν (x)= sin νx, Ω =(0, 2π).We
                                                 0
                                             2
                       have that u ν ,v ν   0 in L but the product u ν v ν does not tend to 0 weakly in
                                              2
                                                                2
                        2
                       L (since u ν (x)v ν (x)= sin νx   1/2 6=0 in L ).
                          (ii) We want to prove that ku ν − uk L 2 → 0.We write
                                        Z            Z        Z       Z
                                                 2       2                2
                                           |u ν − u| =  u − 2   uu ν +   u .
                                                         ν
                                         Ω            Ω        Ω       Ω
                                               R  2      2     2    1
                       The first integral tends to  u since u  u in L (choosing ϕ(x) ≡ 1 ∈ L ∞
                                                         ν
                                                                                   R
                                                                                      2
                       in the definition of weak convergence). The second one tends to −2 u since
                                            2
                                  2
                       u ν  u in L and u ∈ L . The claim then follows.
                       Exercise 1.3.4. (i) The case p = ∞ is trivial. So assume that 1 ≤ p< ∞.We
                       next compute
                                       Z                        Z
                                         +∞                       +∞
                            u ν (x)=        ϕ (x − y) u (y) dy = ν   ϕ (ν (x − y)) u (y) dy
                                             ν
                                        −∞                       −∞
                                       Z
                                         +∞       ³    z  ´
                                   =        ϕ (z) u x −   dz .
                                                       ν
                                        −∞
                       We therefore find
                                             Z
                                               +∞     ¯ ³      ´¯
                                                      ¯      z ¯
                                 |u ν (x)| ≤      ϕ(z) ¯u x −   ¯ dz
                                                             ν
                                              −∞
                                             Z
                                               +∞         h        ¯ ³      ´¯i
                                                       1/p 0    1/p ¯     z ¯
                                         =        |ϕ(z)|   |ϕ(z)|  ¯u x −    ¯ dz .
                                                                          ν
                                              −∞
                       Hölder inequality leads to
                                                       0
                                      µZ           ¶ 1/p µZ                      ¶ 1/p
                                          +∞                +∞     ¯ ³      ´¯ p
                                                                   ¯
                             |u ν (x)| ≤     ϕ(z) dz           ϕ(z) ¯u x −  z ¯ ¯ dz  .
                                                                          ν
                                         −∞                −∞
                            R
                       Since  ϕ =1, we have, after interchanging the order of integration,
                                      Z                Z     Z
                                        +∞               +∞    +∞ n     ¯ ³     ´¯ p  o
                              p                  p                      ¯      z ¯
                          ku ν k  =        |u ν (x)| dx ≤          ϕ (z) ¯u x −  ¯ dz dx
                              L p                                              ν
                                       −∞               −∞    −∞
                                      Z    ½     Z                  ¾
                                        +∞         +∞ ¯ ³      ´¯
                                                                 p            p
                                                             z ¯
                                  ≤         ϕ (z)     ¯ ¯u x −  ¯ dx dz ≤ kuk L p .
                                                             ν
                                       −∞         −∞
   180   181   182   183   184   185   186   187   188   189   190