Page 183 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 183

170                                            Solutions to the Exercises

                       we get

                                kuk C 0,α  = kuk C 0 +[u] C 0,α
                                         ≤ kuk C 0 +max {2 kuk C 0 , [u] C 0,β } ≤ 3 kuk C 0,β .

                          (iii) We now assume that Ω is bounded and convex and k =0 (for the sake
                                                          Ω ⊂ C
                                                                     Ω .From the mean value
                       of simplicity) and let us show that C 1  ¡ ¢  0,1  ¡ ¢
                       theorem, we have that for every x, y ∈ Ω we can find z ∈ [x, y] ⊂ Ω (i.e., z is an
                       element of the segment joining x to y)sothat
                                            u(x) − u(y)= h∇u(z); x − yi .

                       We have, indeed, obtained that

                                     |u(x) − u(y)| ≤ |∇u(z)||x − y| ≤ kuk C 1 |x − y| .

                                 p
                       7.1.2   L spaces
                       Exercise 1.3.1. (i) Hölder inequality.Let a, b > 0 and 1/p +1/p =1,with
                                                                                   0
                       1 <p < ∞. Since the function f(x)= log x is concave, we have that
                                       µ           ¶
                                         1  p  1  p 0  1     p   1    p 0
                                    log   a +   b    >   log a +  log b  =log ab
                                         p     p 0     p        p 0
                       and hence
                                                  1  p  1  p 0
                                                   a +    b  ≥ ab .
                                                  p     p 0
                       Choose then
                                                     |u|        |v|
                                               a =       ,b =
                                                   kuk        kvk
                                                      L p        L p 0
                       and integrate to get the inequality for 1 <p < ∞.The cases p =1 or p = ∞
                       are trivial.
                          Minkowski inequality.The cases p =1 and p = ∞ are obvious. We
                       thereforeassumethat 1 <p < ∞. Use Hölder inequality to get
                                           Z           Z                Z
                                    p               p             p−1              p−1
                             ku + vk    =     |u + v| ≤   |u||u + v|  +   |v||u + v|
                                    L p
                                             Ω           Ω               Ω
                                                 °         °          °         °
                                                 °      p−1°          °      p−1°
                                        ≤ kuk  L p °|u + v|  °  + kvk L p °|u + v|  °  .
                                                            L p 0                L p 0
                       The result then follows, since
                                            °         °
                                                                   p−1
                                            °      p−1°
                                            °|u + v|  °   = ku + vk L p .
                                                       L p 0
   178   179   180   181   182   183   184   185   186   187   188