Page 182 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 182

Chapter 7



                Solutions to the Exercises







                7.1    Chapter 1: Preliminaries

                7.1.1   Continuous and Hölder continuous functions
                Exercise 1.2.1. (i) We have

                                     kuvk C 0,α = kuvk C 0 +[uv] C 0,α .
                Since
                                      |u(x)v(x) − u(y)v(y)|
                       [uv]    ≤ sup
                          C 0,α                   α
                                            |x − y|
                                            |v(x) − v(y)|          |u(x) − u(y)|
                               ≤ kuk   0 sup        α   + kvk  0 sup      α
                                      C                      C
                                              |x − y|                |x − y|
                we deduce that
                        kuvk C 0,α  ≤ kuk C 0 kvk C 0 + kuk C 0 [v] C 0,α + kvk C 0 [u] C 0,α
                                  ≤ 2 kuk C 0,α kvk C 0,α .
                                           k
                   (ii) The inclusion C k,α  ⊂ C is obvious. Let us show that C k,β  ⊂ C k,α .We
                will prove, for the sake of simplicity, only the case k =0.Observe that
                                                      (            )
                             ½             ¾
                               |u(x) − u(y)|            |u(x) − u(y)|
                        sup            α     ≤   sup            β    6 [u] C 0,β .
                                 |x − y|
                       x,y∈Ω                    x,y∈Ω     |x − y|
                      0<|x−y|<1                0<|x−y|<1
                Since
                               ½            ¾
                                 |u(x) − u(y)|
                          sup           α     ≤ sup {|u(x)| − u(y)} ≤ 2 kuk C 0
                          x,y∈Ω    |x − y|      x,y∈Ω
                         |x−y|≥1
                                                 169
   177   178   179   180   181   182   183   184   185   186   187