Page 180 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 180

Thecaseofdimension n                                              167

                We let
                                    ±    ±             ±    ±
                                  A = A ∩ A µ and B = B ∩ B ν
                                    µ                  ν
                provided these intersections are non empty; and we deduce that
                                         M  ±             N ±
                                         [                 [
                                     ±
                                                               ±
                                   A =      A ±  and B =      B .
                                                      ±
                                             µ                 ν
                                         µ=1              ν=1
                                                                      +
                By construction we have M +  <M and M  −  <M,while N , N   −  ≤ N.If
                                      +
                                                           −
                λ ∈ [0, 1],we see that λA +(1 − λ) B +  and λA +(1 − λ) B  −  are separated
                by {x : x i = λa +(1 − λ) b} and thus
                                         ¡  +           + ¢    ¡                ¢
                  M (λA +(1 − λ) B)= M λA +(1 − λ) B       + M λA +(1 − λ) B   −  .
                                                                   −
                                                     +
                Applying the hypothesis of induction to A , B +  and A , B ,wededucethat
                                                                    −
                                                                −
                                          h                                 i n
                                            £   ¡  + ¢¤ 1/n      £  ¡  +  ¢¤ 1/n
                   M (λA +(1 − λ) B) ≥     λ M A        +(1 − λ) M B
                                            h                                 i n
                                              £   ¡  ¢¤ 1/n        £  ¡   ¢¤ 1/n
                                          + λ M A   −     +(1 − λ) M B   −       .
                Using (6.7) we obtain
                                             + h
                                         M (A )          1/n                1/n i n
                  M (λA +(1 − λ) B) ≥            λ [M (A)]  +(1 − λ)[M (B)]
                                         M (A)
                                               − h
                                          M (A )           1/n               1/n i n
                                        +          λ [M (A)]  +(1 − λ)[M (B)]     .
                                           M (A)
                The identity (6.6) and the above inequality imply then (6.2).
                   Step 4. We now show (6.2) for any compact set, concluding thus the proof
                of the theorem. Let  > 0, we can then approximate the compact sets A and B,
                by A   and B   as in Step 3, so that

                               |M (A) − M (A   )| , |M (B) − M (B   )| ≤  ,      (6.8)

                            |M (λA +(1 − λ) B) − M (λA   +(1 − λ) B   )| ≤  .    (6.9)
                Applying (6.2) to A   , B   , using (6.8) and (6.9), we obtain, after passing to the
                limit as   → 0,the claim
                                          1/n          1/n                1/n
                       [M (λA +(1 − λ) B)]   ≥ λ [M (A)]  +(1 − λ)[M (B)]    .
   175   176   177   178   179   180   181   182   183   184   185