Page 178 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 178

Thecaseofdimension n                                              165

                This is a direct consequence of the fact that the logarithm function is concave
                and hence       Ã        !                   Ã      !
                                   n          n                n
                                  X          X                Y
                              log          ≥    λ i log u i =log  u λ i  .
                                     λ i u i
                                                                  i
                                  i=1        i=1              i=1
                   Step 2. Let F be the family of all open sets A of the form
                                                n
                                               Y
                                           A =    (a i ,b i ) .
                                               i=1
                We will now prove the theorem for A, B ∈ F. We will even show that for every
                λ ∈ [0, 1], A, B ∈ F we have
                                        1/n          1/n               1/n
                     [M (λA +(1 − λ) B)]   ≥ λ [M (A)]  +(1 − λ)[M (B)]    .     (6.2)
                The theorem follows from (6.2) by setting λ =1/2.If we let
                                        n                 n
                                       Y                 Y
                                   A =    (a i ,b i ) and B =  (c i ,d i )
                                       i=1               i=1
                we obtain
                                          n
                                          Y
                          λA +(1 − λ) B =   (λa i +(1 − λ) c i ,λb i +(1 − λ) d i ) .
                                          i=1
                Setting, for 1 ≤ i ≤ n,
                                b i − a i                      d i − c i
                  u i =                         ,v i =                           (6.3)
                      λ (b i − a i )+ (1 − λ)(d i − c i )  λ (b i − a i )+(1 − λ)(d i − c i )
                we find that
                                    λu i +(1 − λ) v i =1, 1 ≤ i ≤ n,             (6.4)
                                             n                          n
                              M (A)         Y            M (B)         Y
                                          =    u i ,                 =    v i .  (6.5)
                        M (λA +(1 − λ) B)          M (λA +(1 − λ) B)
                                            i=1                        i=1
                We now combine (6.1), (6.4) and (6.5) to deduce that
                                                                          n
                                                          n
                     λ [M (A)] 1/n  +(1 − λ)[M (B)] 1/n  Y   1/n         Y   1/n
                                                    = λ     u    +(1 − λ)   v
                                           1/n               i               i
                         [M (λA +(1 − λ) B)]
                                                         i=1             i=1
                                                          n              n
                                                         X   u i        X  v i
                                                    ≤ λ        +(1 − λ)
                                                             n             n
                                                          i=1           i=1
                                                           n
                                                        1  X
                                                    =        (λu i +(1 − λ) v i )= 1
                                                        n
                                                          i=1
   173   174   175   176   177   178   179   180   181   182   183