Page 197 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 197

184                                            Solutions to the Exercises

                       7.2    Chapter 2: Classical methods

                       7.2.1   Euler-Lagrange equation

                       Exercise 2.2.1. The proof is almost identical to that of the theorem. The Euler-
                       Lagrange equation becomes then a system of ordinary differential equations,
                       namely, if u =(u 1 , ..., u N ) and ξ =(ξ , ..., ξ ),wehave
                                                        1    N
                                       d £          ¤
                                                  0             0
                                            (x, u, u ) = f u i  (x, u, u ) ,i =1, ..., N.
                                      dx
                                          f ξ i
                       Exercise 2.2.2. We proceed as in the theorem. We let
                                 n                                                   o
                                        n
                             X = u ∈ C ([a, b]) : u (j)  (a)= α j ,u (j)  (b)= β , 0 ≤ j ≤ n − 1
                                                                       j
                       If u ∈ X ∩ C 2n  ([a, b]) is a minimizer of (P) we have I (u +  v) ≥ I (u) , ∀  ∈ R
                       and ∀v ∈ C ∞  (a, b).Letting f = f (x, u, ξ , ..., ξ ) and using the fact that
                                 0                         1    n
                                                 d
                                                   I (u +  v)|  =0  =0
                                                 d
                       we find
                           (                                         )
                        Z                       n
                          b    ³          ´    X     ³          ´
                            f u x, u, ..., u (n)  v +  f ξ i  x, u, ..., u (n)  v (i)  dx =0, ∀v ∈ C 0 ∞  (a, b) .
                         a
                                               i=1
                       Integrating by parts and appealing to the fundamental lemma of the calculus of
                       variations (Theorem 1.24) we find
                                  n
                                 X      i+1 d i h  ³        (n) ´i   ³        (n) ´
                                    (−1)        f ξ i  x, u, ..., u  = f u x, u, ..., u  .
                                           dx i
                                 i=1
                       Exercise 2.2.3. (i) Let
                                                ©     1               ª
                                           X 0 = v ∈ C ([a, b]) : v (a)= 0 .
                                   2
                       Let u ∈ X ∩C ([a, b]) be a minimizer for (P), since I (u +  v) ≥ I (u) , ∀v ∈ X 0 ,
                       ∀  ∈ R we deduce as above that
                                   Z  b
                                                               0
                                                             0
                                      {f u (x, u, u ) v + f ξ (x, u, u ) v } dx =0, ∀v ∈ X 0 .
                                               0
                                    a
                       Integrating by parts (bearing in mind that v (a)= 0)we find
                                b
                              Z  ½∙          ¸ ¾
                                         d
                                                                0
                                    f u −  f ξ v dx + f ξ (b, u (b) , u (b)) v (b)= 0, ∀v ∈ X 0 .
                               a        dx
   192   193   194   195   196   197   198   199   200   201   202