Page 204 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 204

Chapter 2: Classical methods                                      191

                7.2.3   Hamiltonian formulation
                Exercise 2.4.1. The proof is a mere repetition of that of Theorem 2.10 and
                we skip the details. We just state the result. Let u =(u 1 , ..., u N ) and ξ =
                                                 ¡               ¢
                                                          N
                (ξ , ..., ξ ). Weassumethat f ∈ C 2  [a, b] × R × R N  , f = f (x, u, ξ),and
                 1     N
                that it verifies
                                ³    ´
                    2                                                      N    N
                   D f (x, u, ξ)= f ξ i ξ j  > 0, for every (x, u, ξ) ∈ [a, b] × R × R
                                      1≤i,j≤N
                                f (x, u, ξ)                             N
                            lim          =+∞, for every (x, u) ∈ [a, b] × R .
                           |ξ|→∞   |ξ|
                If we let
                                  H (x, u, v)= sup {hv; ξi − f (x, u, ξ)}
                                             ξ∈R N
                                    N
                then H ∈ C 2  ¡ [a, b] × R × R N  ¢  and, denoting by
                                                              (x, u, v))
                               H v (x, u, v)= (H v 1  (x, u, v) ,..., H v N
                and similarly for H u (x, u, v),we also have
                                   H x (x, u, v)= −f x (x, u, H v (x, u, v))

                                   H u (x, u, v)= −f u (x, u, H v (x, u, v))
                            H (x, u, v)= hv; H v (x, u, v)i − f (x, u, H v (x, u, v))
                                 v = f ξ (x, u, ξ)  ⇔  ξ = H v (x, u, v) .

                The Euler-Lagrange system is

                               d £          ¤
                                           0             0
                                     (x, u, u ) = f u i  (x, u, u ) ,i =1, ..., N.
                                  f ξ i
                               dx
                and the associated Hamiltonian system is given, for every i =1, ..., N,by
                                        ⎧
                                            0
                                            i
                                        ⎨ u = H v i  (x, u, v)
                                        ⎩
                                            0
                                           i
                                           v = −H u i  (x, u, v) .
                Exercise 2.4.2. i) The Euler-Lagrange equations are, for i =1..., N,
                                        ⎧
                                              00       (t, u)
                                              i
                                        ⎪ m i x = −U x i
                                        ⎪
                                        ⎪
                                        ⎪
                                        ⎨
                                              00
                                              i
                                           m i y = −U y i  (t, u)
                                        ⎪
                                        ⎪
                                        ⎪
                                        ⎪
                                        ⎩
                                              00
                                              i
                                           m i z = −U z i  (t, u) .
   199   200   201   202   203   204   205   206   207   208   209