Page 27 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 27

14                                                        Preliminaries

                          (v) C 0 ∞  (Ω)= D (Ω)= C ∞  (Ω) ∩ C 0 (Ω).

                                                                N
                          (vi) When dealing with maps u : Ω → R , we will write, for example,
                          ¡     ¢
                       C k  Ω; R N  , and similarly for the other cases.
                                       ¡ ¢
                       Remark 1.5 C  k  Ω with its norm k·k C k isaBanachspace.
                          We will also need to define the set of piecewise continuous functions.

                                               n
                       Definition 1.6 Let Ω ⊂ R be an open set.
                          (i) Define C 0  ¡ ¢       ¡ ¢
                                         Ω = C piec Ω to be the set of piecewise continuous func-
                                     piec
                       tions u : Ω → R. This means that there exists a finite (or more generally a
                       countable) partition of Ω into open sets Ω i ⊂ Ω, i =1, ..., I,sothat
                                           I
                                      Ω = ∪ Ω i , Ω i ∩ Ω j = ∅, if i 6= j, 1 ≤ i, j ≤ I
                                          i=1
                       and u|  is continuous.
                             Ω i
                                        k
                          (ii) Similarly C piec  ¡ ¢                           k−1  ¡ ¢
                                                                                   Ω ,whose
                                            Ω , k ≥ 1,is the set of functions u ∈ C
                                                           ¡ ¢
                       partial derivatives of order k are in C 0  Ω .
                                                        piec
                          We now turn to the notion of Hölder continuous functions.
                                               n
                       Definition 1.7 Let D ⊂ R , u : D → R and 0 <α ≤ 1.We let
                                                         ½             ¾
                                                           |u (x) − u (y)|
                                         [u]      =sup                   .
                                            C 0,α (D)              α
                                                    x,y∈D     |x − y|
                                                     x=y
                                                      6
                                 n
                       Let Ω ⊂ R be open, k ≥ 0 be an integer. We define the different spaces of
                       Hölder continuous functions in the following way.
                          (i) C 0,α  (Ω) is the set of u ∈ C (Ω) so that
                                                        ½            ¾
                                                         |u (x) − u (y)|
                                        [u]      =sup                   < ∞
                                          C 0,α (K)               α
                                                   x,y∈K    |x − y|
                                                    x=y
                                                     6
                       for every compact set K ⊂ Ω.
                                  ¡ ¢                          ¡ ¢
                          (ii) C 0,α  Ω is the set of functions u ∈ C Ω so that
                                                   [u] C 0,α Ω)  < ∞ .
                                                        (
   22   23   24   25   26   27   28   29   30   31   32