Page 198 - Introduction to Continuum Mechanics
P. 198

Maximum Shearing Stress 183

        Thus, if T s denotes the magnitude of the total shearing stress on the plane, we have (see
        Fig. 4.6)



        i.e.,



























                                             Fig. 4.6





        For known values of 7\, TI, and 73, Eq. (4.6.4) states that 7J is a function of
                   W
                       e
        «!, « 2- and 3> i- ->


                                            or
                                       w
           We wish to find the triple (rti,«2> 3) ^  which / attains a maximum. However,


        thus, we are looking for a maximum for the value of the function f(n ^2^3) subjected to the
        constraint that «i 4-«2+«3 = 1.
           Taking the total derivative of Eq. (4.6.5), we obtain
   193   194   195   196   197   198   199   200   201   202   203