Page 288 - Introduction to Information Optics
P. 288

5.6. Wigner Distribution Function

       (a)                              (b)        CO


              (Oft












       (c)                               (d)        CO
                                                     A





                                              7          7





       Fig. 5.2. Space -frequency joint representation of an optical field by the Wigner Distribution
       Function (a) A plane with single spatial frequency o> 0, (b) A beam passing through a pinhole at
       x 0, (c) A beam passing through a lens, (d) A beam propagating in free space over a distance z.


       This is the original Wigner distribution function sheared in the a> direction.
          When the optical field /(x) simply propagates in free space over a distance
       z, its Fourier transform will be multiplied by the transfer function of free-space
       propagation, which is a phase factor [11], and becomes

                                    2
             F(OJ) exp(i'27tz v/l —((OA/2n) /A) « F(w) i
       where the term exp(i 2nz/A) in the right-hand side of the equation, correspond-
       ing to a phase shift related to the propagation over distance z, can be
       disregarded. Then the Wigner distribution function becomes
                        f
                                                     2
              W f(w, x) =  F(co + co'/2) exp(-Uz(co + a)'/2) /4n)F(co - w'/2)
                                          2
                        x exp( — iAz(o) — a)'/2) /4n) exp( — ixa>') d(D r
                        W f(co, x — Az(a/2n).
   283   284   285   286   287   288   289   290   291   292   293