Page 162 - Materials Chemistry, Second Edition
P. 162
150 A. Singh and S. I. Olsen
Jorquera (continued)
(1999) (2010) (2011) (2001) al. (2008), (2011) (2011) (2011) (2011) (2011) (2011) (2011)
al. et al. et al. et et al. (2010) al. et al. et al. al. al. et al. et al. et
Reference Zittelli Jorquera Brentner Cheng-Wu et Sierra al. et Brentner Brentner et Yang et Yang Brentner Brentner Brentner
m biomass biomass biomass biomass
0.07 biomass biomass biomass biomass algal biomass biomass biomass biomass biomass biomass
value 9 1.5 algal algal algal algal kWh/t algal algal algal algal algal kWh/t algal algal algal algal
Calculated kg/m 3 /y 0.73 % 29.6 9 2.5 % 90 200 ha/t 0.01 t/t 7.98 GJ/t 405.5 m 3 /t 474.2 3009.2 kg/t 4.4 kg/t 0.3 kg/t 7.2 kg/t 71.6 499.1 km/t t 8.4 kg/t 149.7 kWh/t 49.9 km/t t 23.3
W/m 3
53
LCA m 0.07 outflow
biodiesel considered 9 1.5 culture W/m 3 10 and water biodiesel biodiesel
algal kg/m 3 /y % 29.6 9 2.5 CO 2 % l/min/l Aeration h/day Pumping kg/FPPBR kg/FPPBR g/l g/l kWh/m 3 kg/m 3 kWh/m 3
the Value 0.73 1.50 0.40 10 7.6 0.6 7.4 27.70 1 0.316 0.1
in
used lime with
assumptions phosphate Centrifugation Flocculation
Key productivity content volume days nitrate
2 Productivity Cultivation energy sheet Ammonium Monocalcium Harvesting 1: 2:
Table Parameter Biomass Lipid FPPBR Working Land CO 2 Solar Water Electricity LDPE Steel Option Electricity Transport Option Lime Electricity Transport