Page 98 - Materials Chemistry, Second Edition
P. 98
Further reading 93
Further reading
Anand, A., Wani, M.F., 2010. Product life-cycle modeling and evaluation at the conceptual design stage: a digraph and
matrix approach. ASME J. Mech. Des. 132 (9). 091010.
EDIP, 2003. http://www.gabi-software.com/support/gabi/gabi-lcia-documentation/edip-2003/.
®
EPD System, 2014. https://www.environdec.com.
EU, JRC, 2012. Organisation Environmental Footprint (OEF) Guide, Ispra, Italy.
€
Finkbeiner, M., Saur, K., 1999. Ganzheitliche Bewertung in der Praxis. In Okologische Bewertung von Produkten,
€
Betrieben und Branchen; Symposium Bundesministerium f€ ur Umwelt. Jugend und Familie Osterreich, Vienna,
Austria.
Ghadimi, P., Azadnia, A.H., Yusof, N.M., Saman, M.Z.M., 2012. A weighted fuzzy approach for product sustainability
assessment: a case study in automotive industry. J. Clean. Prod. 33, 10–21.
He, B., Huang, S., Wang, J., 2015. Product low-carbon design using dynamic programming algorithm. Int. J. Precis.
Eng. Manuf. G.T. 2 (1), 37–42.
He, C., Zhang, Q., Ren, J., Li, Z., 2017. Combined cooling heating and power systems: sustainability assessment under
uncertainties. Energy 139, 755–766.
Hemdi, A.R., Mat Saman, M.Z., Sharif, S., 2013. Sustainability evaluation using fuzzy inference methods. Int. J. Sus-
tain. Energy 32 (3), 169–185.
ISO, 2006a. IS0 14040, First edition, 1997-06-15. Life Cycle Assessment. International Organization for standardization,
Geneva.
ISO, 2010. ISO 14025—Environmental Labels and Declarations. International Organization for Standardization,
Geneve.
ISO, 2013. ISO/TR 14069:2013—Greenhouse Gases—Quantification and Reporting of Greenhouse Gas Emissions for
Organizations. International Organization for Standardization, Geneve.
Maxim, A., 2014. Sustainability assessment of electricity generation technologies using weighted multi-criteria deci-
sion analysis. Energy Policy 65, 284–297.
Pope, J., Annandale, D., Morrison-Saunders, A., 2004. Conceptualizing sustainability assessment. Environ. Impact
Assess. Rev. 24, 595–616.
ReCiPE, 2008. A Life Cycle Impact Assessment Method Which Comprises Harmonized Category Indicators at the
Midpoint and the Endpoint Level. Lieden University Press. www.leidenuniv.nl/cml/ssp/publications/
recipe_characterisation.pdf.
Ren, J., Liang, H., 2017a. Multi-criteria group decision-making based sustainability measurement of wastewater treat-
ment processes. Environ. Impact Assess. Rev. 65, 91–99.
Ren, J., Liang, H., 2017b. Measuring the sustainability of marine fuels: a fuzzy group multi-criteria decision making
approach. Transp. Res. D 54, 12–29.
€
Ren, J., LUtzen, M., 2017. Selection of sustainable alternative energy source for shipping: multi-criteria decision mak-
ing under incomplete information. Renew. Sustain. Energy Rev. 74, 1003–1019.
Ren, J., Toniolo, S., 2018. Life cycle sustainability decision-support framework for ranking of hydrogen production
pathways under uncertainties: an interval multi-criteria decision making approach. J. Clean. Prod. 175, 222–236.
Rosenbaum, R.K., 2014. Selection of impact categories, category indicators and characterization models.
In: Curran, M.A. (Ed.), Goal and Scope Definition in Life Cycle Assessment, LCA.
Santoyo-Castelazo, E., Azapagic, A., 2014. Sustainability assessment of energy systems: integrating environmental,
economic and social aspects. J. Clean. Prod. 80, 119–138.
ˇ
Skobalj, P., Kijev canin, M., Afgan, N., Jovanovi c, M., Turanjanin, V., Vu ci cevi c, B., 2017. Multi-criteria sustainability
analysis of thermal power plant Kolubara-A Unit 2. Energy 125, 837–847.
UN Environment, 2016. The life Cycle Initiative. https://www.lifecycleinitiative.org/about/about-lci/.