Page 205 - Lignocellulosic Biomass to Liquid Biofuels
P. 205

Lignocellulosic biomass to biodiesel  167


              [149] K. Chojnacka, F.J. Marquez-Roche, Kinetic stoichiometric relationship of the
                  energy and carbon metabolism in the culture of microalgae, Biotechnology 3
                  (2004) 21 34.
              [150] G. Huang, F. Chen, D. Wei, X. Zhang, G. Chen, Biodiesel production by microal-
                  gal biotechnology, Appl. Energy 87 (2010) 38 46.
              [151] P. Li, X. Miao, R. Li, J. Zhong, In situ biodiesel production from fast-growing and
                  high oil content Chlorella pyrenoidosa in rice straw hydrolysate, J. Biomed.
                  Biotechnol. 2011 (2001) 1 8.
              [152] A. Wei, X. Zhang, D. Wei, G.U. Chen, Q. Wu, S.T. Yang, Effects of cassava starch
                  hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae
                  Chlorella protothecoides, J. Ind. Microbiol. Biotechnol. 36 (2009) 1383 1389.
              [153] H. Xu, X. Miao, Q. Wu, High quality biodiesel production from a microalga
                  Chlorella protothecoides by heterotrophic growth in fermenters, J. Biotechnol. 126
                  (2006) 499 507.
              [154] Y. Lu, Y. Zhai, M. Liu, Q. Wu, Biodiesel production from algal oil using cassava
                  (Manihot esculenta Crantz) as feedstock, J. Appl. Phycol. 22 (2010) 573 578.
              [155] M.M. EL-Sheekh, M.Y. Bedaiwy, M.E. Osman, M.M. Ismail, Mixotrophic and
                  heterotrophic growth of some microalgae using extract of fungal-treated wheat
                  bran, Int. J. Rec. Org. Waste Agric. 1 (2012) 121 129.
              [156] D. Pleissner, W.C. Lam, Z. Sun, C.S.K. Lin, Food waste as nutrient source in het-
                  erotrophic microalgae cultivation, Bioresour. Technol. 137 (2013) 139 146.
              [157] A. Beopoulos, J. Cescut, R. Haddouche, J.L. Uribelarrea, C. Molina-Jouve, J.M.
                  Nicaud, Yarrowia lipolytica as a model for bio-oil production, Prog. Lipid Res. 48
                  (2009) 375 387.
              [158] L. Viikari, M. Alapuranen, T. Puranen, J. Vehmaanperä, M. Siika-Aho,
                  Thermostable enzymes in lignocellulose hydrolysis, Adv. Biochem. Eng.
                  Biotechnol. 108 (2007) 121 145.
              [159] A.M. O’Reilly, J.A. Scott, Defined coimmobilization of mixed microorganism cul-
                  tures, Enzyme Microb. Technol. 17 (1995) 636 646.
              [160] M.A. Borowitzka, Commercial production of microalgae: ponds, tanks, tubes and
                  fermenters, J. Biotechnol. 70 (1999) 313 321.
              [161] G.W. Stratton, T.M. Smith, Interaction of organic solvents with the green alga
                  Chlorella pyrenoidosa, Bull. Environ. Contam. Toxicol. 40 (1988) 736 742.
              [162] A. El Jay, Effects of organic solvents and solvent-atrazine interactions on two algae,
                  Chlorella vulgaris and Selenastrum capricornutum, Arch. Environ. Contam. Toxicol. 31
                  (1996) 84 90.
              [163] I.S. Suh, S.B. Lee, A light distribution model for an internally radiating photobior-
                  eactor, Biotechnol. Bioeng. 82 (2003) 180 189.
              [164] J.Y. Park, M.S. Park, Y.C. Lee, J.W. Yang, Advances in direct transesterification of
                  algal oils from wet biomass, Bioresour. Technol. 184 (2015) 267 275.
              [165] D.Y.C. Leung, X. Wu, M.K.H. Leung, A review on biodiesel production using
                  catalyzed transesterification, Appl. Energy 87 (2010) 1083 1095.



              Further reading

              A. Yousuf, Biodiesel from lignocellulosic biomass Prospects and challenges, Waste
                 Manage. 32 (11) (2012) 2061 2067.
   200   201   202   203   204   205   206   207   208   209   210