Page 201 - Lignocellulosic Biomass to Liquid Biofuels
P. 201
Lignocellulosic biomass to biodiesel 163
[74] V. Balan, B. Bals, S.P. Chundawat, D. Marshall, B.E. Dale, Lignocellulosic biomass
pretreatment using AFEX, Biofuels Methods Protoc. (2009) 61 77.
[75] T.C. Bradshaw, H. Alizadeh, F. Teymouri, V. Balan, B.E. Dale, Ammonia fiber
expansion pretreatment and enzymatic hydrolysis on two different growth stages of
reed canary grass, Appl. Biochem. Biotechnol. 140 (2007) 395 405.
[76] H.D. Zhang, S.B. Wu, Enhanced enzymatic cellulose hydrolysis by subcritical carbon
dioxide pretreatment of sugarcane bagasse, Bioresour. Technol. 158 (2014)
161 165.
[77] E. Varga, A.S. Schmidt, K. Réczey, A.B. Thomsen, Pretreatment of corn stover
using wet oxidation to enhance enzymatic digestibility, Appl. Biochem. Biotechnol.
104 (2003) 37 50.
[78] H.B. Klinke, A.B. Thomsen, B.K. Ahring, Inhibition of ethanol-producing yeast and
bacteria by degradation products produced during pre-treatment of biomass, Appl.
Microbiol. Biotechnol. 66 (2004) 10 26.
[79] H.K. Sharma, C. Xu, W. Qion, Biological pretreatment of lignocellulosic biomass
for biofuels and bioproducts: an overview, Waste Biomass Valor. 10 (2017) 1 17.
[80] M.J. Taherzadeh, K. Karimi, Enzyme-based hydrolysis processes for ethanol from lig-
nocellulosic materials: a review, BioResources 2 (2007) 707 738.
[81] T. Eriksson, J. Karlsson, F. Tjerneld, A model explaining declining rate in hydrolysis
of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I
(cel7B) of Trichoderma reesei, Appl. Biochem. Biotechnol. Bioeng. 101 (2002) 41 60.
[82] P. Väljamäe, K. Kipper, G. Petterson, G. Johansson, Synergistic cellulose hydrolysis
can be described in terms of fractal-like kinetics, Biotechnol. Bioeng. 84 (2003)
254 257.
[83] M.L. Rabinovich, M.S. Melnik, A.V. Boloboba, Microbial cellulose (review), Appl.
Biochem. Microbiol. 38 (2002) 305 321.
[84] H. Itoh, M. Wada, Y. Honda, M. Kuwahara, T. Watanabe, Bioorganosolve pretreat-
ments for simultaneous saccharification and fermentation of beech wood by ethano-
lysis and white rot fungi, J. Biotechnol. 103 (2003) 273 280.
[85] N. Ortega, M.D. Busto, M. Perez-Mateos, Kinetics of cellulose saccharification by
Trichoderma reesei cellulases, Int. Biodeterior. Biodegrad. 47 (2001) 7 14.
[86] C. Tengborg, M. Galbe, G. Zacchi, Influence of enzyme loading and physical para-
meters on the enzymatic hydrolysis of steam-pretreated softwood, Biotechnol. Prog.
17 (2001) 110 117.
[87] C.E. Wyman, Handbook on Bioethanol: Production and Utilization, Taylor &
Francis, Washington, DC, 1996.
[88] H. Jørgensen, J.B. Kristensen, C. Felby, Enzymatic conversion of lignocellulose into
fermentable sugars: challenges and opportunities, Biofuels Bioprod. Bioref. 1 (2007)
119 134.
[89] Y.H.P. Zhang, M.E. Himmel, J.R. Mielenz, Outlook for cellulose improvement:
screening and selection strategies, Biotechnol. Adv. 24 (2006) 452 481.
[90] P. Andric, A.S. Meyer, P.A. Jensen, K. Dam-Johansen, Reactor design for minimiz-
ing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and
mechanism of cellobiose and glucose inhibition on cellulolytic enzymes, Biotechnol.
Adv. 28 (2010) 308 324.
[91] M. Tu, X. Zhang, A. Kurabi, N. Gilkes, W. Mabee, J. Saddler, Immobilization of
beta-glucosidase on Eupergit C for lignocellulose hydrolysis, Biotechnol. Lett. 28
(2006) 151 156.
[92] L. Olsson, H.R. Soerensen, B.P. Dam, H. Christensen, K.M. Krogh, A.S. Meyer,
Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicel-
lulose with recombinant xylose utilizing Saccharomyces cerevisiae, Twenty-Seventh
Symposium on Biotechnology for Fuels and Chemicals (2006) 117 129. Humana
Press.