Page 198 - Lignocellulosic Biomass to Liquid Biofuels
P. 198
160 Lignocellulosic Biomass to Liquid Biofuels
[18] F.H. Isikgor, R. Becer, Lignocellulosic biomass: a sustainable platform for the pro-
duction of bio-based chemicals and polymers, Polym. Chem. 6 (2015) 4497 4559.
[19] G.W. Huber, Breaking the Chemical and Engineering Barriers to Lignocellulosic
Biofuels: Next Generation Hydrocarbon Biorefineries, National Science Foundation,
2008.
[20] R.E.H. Sims, W. Mabee, J. Saddler, M. Taylor, An overview of second generation
biofuel technologies, Bioresour. Technol. 101 (2009) 1570 1580.
[21] T.W. Hertel, J. Steinbuks, W.E. Tyner, What is the social value of second genera-
tion biofuels? Appl. Econ. Perspect. Policy (2015) 1 19.
[22] M. Stöcker, Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conver-
sion of lignocellulosic biomass using porous materials, Angew. Chem. 47 (2008)
9200 9211.
[23] F. Cherubini, A.H. Strømman, Chemicals from lignocellulosic biomass: opportu-
nities, perspectives, and potential of biorefinery systems, Biofuels Bioprod. Bioref. 5
(2011) 548 561.
[24] M. Galbe, G. Zacchi, A review of the production of ethanol from softwood, Appl.
Microbiol. Biotechnol. 59 (2002) 618 628.
[25] N.C. Carpita, M. Tierney, M. Campbell, Molecular biology of the plant cell wall:
searching for the genes that define structure, architecture and dynamics, Plant Mol.
Biol. 47 (2001) 1 5.
[26] R.C. Kuhad, A. Singh, K.E. Eriksson, Microorganisms and enzymes involved in the
degradation of plant fiber cell walls, Adv. Biochem. Eng. Biotechnol. 57 (1997)
45 125.
[27] S.Y. Ding, M.E. Himmel, The maize primary cell wall microfibril: a new model
derived from direct visualization, J. Agric. Food Chem. 54 (2006) 597 606.
[28] O.P. Ward, M. Moo-Young, Enzymatic degradation of cell wall and related plant
polysaccharides, CRC Crit. Rev. Biotechnol., 8, 1989, pp. 237 274.
[29] N.C. Carpita, D.M. Gibeaut, Structural models of primary cell walls in flowering
plants: consistency of molecular structure with the physical properties of the walls
during growth, Plant J. 3 (1993) 1 30.
[30] S.Y. Ding, M.E. Himmel, Anatomy and ultrastructure of maize cell walls: an exam-
ple of energy plants, in: Biomass Recalcitrance: Deconstructing the Plant Cell Wall
for Bioenergy, 2008, pp. 38 60.
[31] J.F. Matthews, C.E. Skopec, P.E. Mason, P. Zuccato, R.W. Torget, J. Sugiyama,
et al., Computer simulation studies of microcrystalline cellulose Iβ, Carbohydr. Res.
34 (2006) 138 152.
[32] M. Jin, P.J. Slininger, B.S. Dien, S. Waghmode, B.R. Moser, A. Orjuela, et al.,
Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges, Trends
Biotechnol., 33, 2015, pp. 42 54.
[33] J.M. Ageitos, J.A. Vallejo, P. Veiga-Crespo, T.G. Villa, Oily yeasts as oleaginous cell
factories, Appl. Microbiol. Biotechnol. 90 (2011) 1219 1227.
[34] J.D. Weete, D.J. Weber, Lipid Biochemistry of Fungi and Other Organisms, Plenum
Press, 1980.
[35] V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, D.B. Levin, Biomass pretreatment:
fundamentals toward application, Biotechnol. Adv. 29 (2011) 675 685.
[36] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a
review, Bioresour. Technol. 83 (2002) 1 11.
[37] J. Yoo, S. Alavi, P. Vadlani, V. Amanor-Boadu, Thermo-mechanical extrusion pre-
treatment for conversion of soybean hulls to fermentable sugars, Bioresour. Technol.
102 (2011) 7583 7590.
[38] J. Zheng, L. Rehmann, Extrusion pretreatment of lignocellulosic biomass: a review,
Int. J. Mol. Sci. 15 (2014) 18967 18984.