Page 199 - Lignocellulosic Biomass to Liquid Biofuels
P. 199
Lignocellulosic biomass to biodiesel 161
[39] C. Karunanithy, K. Muthukumarappan, W.R. Gibbons, Effect of extruder screw
speed, temperature, and enzyme levels on sugar recovery from different biomasses,
ISRN Biotechnol. (2013) 1 13.
[40] S. Ethaib, R. Omar, S.M.M. Kamal, D.R.A. Biak, Microwave assisted pretreatment
of lignocellulosic biomass: a review, J. Eng. Sci. Technol. (2015) 97 109.
[41] Z. Zhu, D.J. Macquarrie, R. Simister, L.D. Gomez, S.J. McQueen-Mason,
Microwave assisted chemical pretreatment of Miscanthus under different temperature
regimes, Sustain. Chem. Process 3 (2015) 15 27.
[42] J. Zhu, C.A. Rezende, R. Simister, S.J. McQueen-Mason, D.J. Macquarrie, I.
Polikarpov, et al., Efficient sugar production from sugarcane bagasse by microwave
assisted acid and alkali pretreatment, Biomass Bioenergy 93 (2016) 269 278.
[43] P.R. Gogate, V.S. Sutkar, A.B. Pandit, Sonochemical reactors: important design and
scale up considerations with a special emphasis on heterogeneous systems, Chem.
Eng. J. 166 (2011) 1066 1082.
[44] W. Chen, H. Yu, Y. Liu, P. Chen, M. Zhang, Y. Hai, Individualization of cellulose
nanofibers from wood using high-intensity ultrasonication combined with chemical
pretreatments, Carbohydr. Polym. 83 (2011) 1804 1811.
[45] M.A. Khiyami, A.L. Pometto, R.C. Brown, Detoxification of corn stover and
corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended
cells and plastic compost support biofilms, J. Agric. Food Chem. 53 (2005)
2978 2987.
[46] T. Kan, V. Strezov, T.J. Evans, Lignocellulosic biomass pyrolysis: a review of product
properties and effects of pyrolysis parameters, Renew. Sustain. Energy Rev. 57
(2016) 1126 1140.
[47] R. Kumar, C.E. Wyman, Effects of cellulase and xylanase enzymes on the decon-
struction of solids from pretreatment of poplar by leading technologies, Biotechnol.
Prog. 25 (2009) 302 314.
[48] A. Golberg, M. Sack, J. Teissie, G. Pataro, U. Pliquett, G. Saulis, et al., Energy effi-
cient biomass processing with pulsed electric fields for bioeconomy and sustainable
development, Biotechnol. Biofuels 9 (2016) 94 116.
[49] C.N. Hamelinck, G.V. Hooijdonk, A.P.C. Faaij, Ethanol from lignocellulosic bio-
mass: techno-economic performance in short-, middle- and long-term, Biomass
Bioenergy 28 (2005) 384 410.
[50] L.R. Lynd, P.J. Weimer, W.H. van Zyl, I.S. Pretorius, Microbial cellulose utiliza-
tion: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev. 66 (2002)
506 577.
[51] R. Wooley, M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, A. Galvez, Lignocellulosic
biomass to ethanol process design and economics utilizing co-current dilute acid pre-
hydrolysis and enzymatic hydrolysis, Proceedings of Current and Futuristic Scenarios.
Technical report NREL/TP-580-26157. Golden, CO, National Renewable Energy
Laboratory, vol. 123, 1999.
[52] J.C. Cuzens, J.R. Miller, Acid hydrolysis of bagasse for ethanol production, Renew.
Energy 10 (1997) 285 290.
[53] A.K. Chandel, E. Chan, R. Rudravaram, M.L. Narasu, L.V. Rao, P. Ravindra,
Economics and environmental impact of bioethanol production technologies: an
appraisal, Biotechnol. Mol. Biol. Rev. 2 (2007) 14 32.
[54] C.E. Wyman, B.E. Dale, R.T. Elander, M. Holtzapple, M.R. Ladisch, Y.Y. Lee,
Coordinated development of leading biomass pretreatment technologies, Bioresour.
Technol. 96 (2005) 1959 1966.
[55] S. Gamez, J.A. Ramirez, G. Garrote, M. Vazquez, Manufacture of fermentable sugar
solutions from sugar cane bagasse hydrolyzed with phosphoric acid at atmospheric
pressure, J. Agric. Food Chem. 52 (2004) 4172 4177.