Page 232 - Lignocellulosic Biomass to Liquid Biofuels
P. 232
188 Lignocellulosic Biomass to Liquid Biofuels
[14] Z. Anwar, M. Gulfraz, M. Irshad, Agro-industrial lignocellulosic biomass a key to
unlock the future bio-energy: a brief review, J. Radiat. Res. Appl. Sci. 7 (2) (2014)
163 173.
[15] M. Kumar, Y. Goyal, A. Sarkar, K. Gayen, Comparative economic assessment of
ABE fermentation based on cellulosic and noncellulosic feedstocks, Appl. Energy 93
(2012) 193 204.
[16] S. Liu, A synergetic pretreatment technology for woody biomass conversion, Appl.
Energy 144 (2015) 114 128.
[17] F.G. Calvo-Flores, J.A. Dobado, Lignin as renewable raw material, ChemSusChem 3
(11) (2010) 1227 1235.
[18] M. Kim, D.F. Day, Composition of sugar cane, energy cane, and sweet sorghum
suitable for ethanol production at Louisiana sugar mills, J. Ind. Microbiol.
Biotechnol. 38 (7) (2011) 803 807.
[19] J. Liu, F. Jin, M. Fan, L. Zhu, C. Tang, R. Chang, et al., Production of high pure
hydrogen by an integrated catalytic process: comparison of different lignocellulosic
biomasses and three major components, Fuel 226 (2018) 322 330.
[20] L. Tao, E.C. Tan, R. McCormick, M. Zhang, A. Aden, X. He, et al., Techno-eco-
nomic analysis and life-cycle assessment of cellulosic isobutanol and comparison with
cellulosic ethanol and n-butanol, Biofuels Biofuel Bioprod. Biorefin. 8 (1) (2014)
30 48.
[21] P. Dürre, Fermentative butanol production: bulk chemical and biofuel, Ann. N.Y.
Acad. Sci. 1125 (1) (2008) 353 362.
[22] P. Dürre, Biobutanol: an attractive biofuel, Biotechnol. J. 9 (12) (2007) 1525 1534.
[23] E.A. Bayer, R. Lamed, M.E. Himmel, The potential of cellulases and cellulosomes
for cellulosic waste management, Curr. Opin. Biotechnol. 18 (3) (2007) 237 245.
[24] K.-K. Cheng, B.-Y. Cai, J.-A. Zhang, H.-Z. Ling, Y.-J. Zhou, J.-P. Ge, et al.,
Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery
process, Biochem. Eng. J. 38 (1) (2008) 105 109.
[25] S. Kim, B.E. Dale, Global potential bioethanol production from wasted crops and
crop residues, Biomass Bioenergy 26 (4) (2004) 361 375.
[26] C. Sawatdeenarunat, K. Surendra, D. Takara, H. Oechsner, S.K. Khanal, Anaerobic
digestion of lignocellulosic biomass: challenges and opportunities, Bioresour.
Technol. 178 (2015) 178 186.
[27] M. Bertero, G. de la Puente, U. Sedran, Fuels from bio-oils: Bio-oil production
from different residual sources, characterization and thermal conditioning, Fuel 95
(2012) 263 271.
[28] H. Muhammad Nasir Iqbal, M. Asgher, Characterization and decolorization applica-
bility of xerogel matrix immobilized manganese peroxidase produced from Trametes
versicolor IBL 04, Protein Pept. Lett. 20 (5) (2013) 591 600.
[29] S. Prasad, A. Singh, H.C. Joshi, Ethanol as an alternative fuel from agricultural,
industrial and urban residues, Resour. Conserv. Recycl. 50 (1) (2007) 1 39.
[30] H. Zabed, J. Sahu, A. Boyce, G. Faruq, Fuel ethanol production from lignocellulosic
biomass: an overview on feedstocks and technological approaches, Renew. Sustain.
Energy Rev. 66 (2016) 751 774.
[31] E.F. Alves, S.K. Bose, R.C. Francis, J.L. Colodette, M. Iakovlev, A. Van Heiningen,
Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of
methods, Carbohydr. Polym. 82 (4) (2010) 1097 1101.
[32] G. Monsalve, F. John, P. Medina, C. Ruiz, A. Adriana, Ethanol production of
banana shell and cassava starch, Dyna. Rev. Fac. Nac. Minas 73 (150) (2006) 21 27.
[33] R.M. Rowell, J. Rowell, Paper and Composites From Agro-Based Resources.,
CRC Press, 1996.