Page 233 - Lignocellulosic Biomass to Liquid Biofuels
P. 233
Biobutanol from lignocellulosic biomass: bioprocess strategies 189
[34] Y. Sun, J.J. Cheng, Dilute acid pretreatment of rye straw and bermudagrass for etha-
nol production, Bioresour. Technol. 96 (14) (2005) 1599 1606.
[35] F. Monlau, A. Barakat, E. Trably, C. Dumas, J.-P. Steyer, H. Carrère,
Lignocellulosic materials into biohydrogen and biomethane: impact of structural fea-
tures and pretreatment, Crit. Rev. Environ. Sci. Technol. 43 (3) (2013) 260 322.
[36] R. Chandra, H. Takeuchi, T. Hasegawa, Hydrothermal pretreatment of rice straw
biomass: a potential and promising method for enhanced methane production, Appl.
Energy 94 (2012) 129 140.
[37] R. Chandra, H. Takeuchi, T. Hasegawa, Methane production from lignocellulosic
agricultural crop wastes: a review in context to second generation of biofuel produc-
tion, Renew. Sustain. Energy Rev. 16 (3) (2012) 1462 1476.
[38] M. Pointner, P. Kuttner, T. Obrlik, A. Jager, H. Kahr, Composition of corncobs as
a substrate for fermentation of biofuels, Agron. Res. 12 (2) (2014) 391 396.
[39] H. Noureddini, J. Byun, T.-J. Yu, Stagewise dilute-acid pretreatment and enzyme
hydrolysis of distillers’ grains and corn fiber, Appl. Biochem. Biotechnol. 159 (2)
(2009) 553 567.
[40] S. Kumar, U. Kothari, L. Kong, Y. Lee, R.B. Gupta, Hydrothermal pretreatment of
switchgrass and corn stover for production of ethanol and carbon microspheres,
Biomass Bioenergy 35 (2) (2011) 956 968.
[41] M. Rubio, J.F. Tortosa, J. Quesada, D. Gómez, Fractionation of lignocellulosics.
Solubilization of corn stalk hemicelluloses by autohydrolysis in aqueous medium,
Biomass Bioenergy 15 (6) (1998) 483 491.
[42] R. Howard, E. Abotsi, E.J. Van Rensburg, S. Howard, Lignocellulose biotechnol-
ogy: issues of bioconversion and enzyme production, Afr. J. Biotechnol. 2 (12)
(2003) 602 619.
[43] A.J. Callejón-Ferre, J. Carreño-Sánchez, F.J. Suárez-Medina, J. Pérez-Alonso, B.
Velázquez-Martí, Prediction models for higher heating value based on the structural
analysis of the biomass of plant remains from the greenhouses of Almería (Spain),
Fuel 116 (2014) 377 387.
[44] A.J. Callejón-Ferre, B. Velázquez-Martí, J.A. López-Martínez, F. Manzano-
Agugliaro, Greenhouse crop residues: energy potential and models for the prediction
of their higher heating value, Renew. Sustain. Energy Rev. 15 (2) (2011) 948 955.
[45] O.P. Karthikeyan, C. Visvanathan, Bio-energy recovery from high-solid organic sub-
strates by dry anaerobic bio-conversion processes: a review, Rev. Environ. Sci. Bio/
Technol. 12 (3) (2013) 257 284.
[46] F. Monlau, A. Barakat, J.P. Steyer, H. Carrere, Comparison of seven types of
thermo-chemical pretreatments on the structural features and anaerobic digestion of
sunflower stalks, Bioresour. Technol. 120 (2012) 241 247.
[47] S.T. Merino, J. Cherry, Progress and challenges in enzyme development for biomass
utilization, Biofuels, Springer, 2007, pp. 95 120.
[48] M. Mosihuzzaman, A. Quddus, N. Nahar, O. Theander, Comparative study of car-
bohydrates in the two major species of jute (Corchorus capsularis and Corchorus olitor-
ius), J. Sci. Food Agric. 48 (3) (1989) 305 310.
[49] D. Rana, V. Rana, B.K. Ahring, Producing high sugar concentrations from loblolly
pine using wet explosion pretreatment, Bioresour. Technol. 121 (2012) 61 67.
[50] X. Pan, D. Xie, R.W. Yu, J.N. Saddler, The bioconversion of mountain pine bee-
tle-killed lodgepole pine to fuel ethanol using the organosolv process, Biotechnol.
Bioeng. 101 (1) (2008) 39 48.
[51] A. Linan-Montes, S.M. De La Parra-Arciniega, M.T. Garza-González, R.B. García-
Reyes, E. Soto-Regalado, F.J. Cerino-Córdova, Characterization and thermal analy-
sis of agave bagasse and malt spent grain, J. Therm. Anal. Calorim. 115 (1) (2014)
751 758.