Page 175 - Lindens Handbook of Batteries
P. 175
6.28 PRINCIPLES OF OPERATION
6. Verbrugge, M., Adaptive Characterization and Modeling of Electrochemical Energy Storage Devices for
Hybrid Electric Vehicle Applications. Modern Aspects of Electrochemistry, ed. M. Schlesinger. Vol. 43. 2008,
New York: Springer-Verlag.
7. Newman, J., Electrochemical Systems, 2nd ed. 1991, New York: Prentice Hall.
8. Lin, C., R. E. White, and H. J. Ploehn, Modeling the Effects of Ion Association on Alternating Current Impedance
of Solid Polymer Electrolytes. Journal of the Electrochemical Society, 2002. 149(7): p. E242-E251.
9. McQuarrie, D., and J. D. Simon, Molecular Thermodynamics. 1999, Sausalito, CA: University Science
Books.
10. Ohzuku, T., and A. Ueda, Phenomenological Expression of Solid-State Redox Potentials of LiCoO ,
2
LiCo Ni O and LiNiO Insertion Electrodes. Journal of the Electrochemical Society, 1997. 144(8):
1/2
2
2
1/2
p. 2780-2785.
11. Slattery, J. C., Advanced Transport Phenomena. 1999, New York: Cambridge University Press.
12. Gomadam, P. M., et al., Modeling Li/CFx-SVO Hybrid-Cathode Batteries. Journal of the Electrochemical
Society, 2007. 154(11): p. A1058-A1064.
13. Crespi, A. M., P. M. Skarstad, and H. W. Zandbergen, Characterization of Silver Vanadium Oxide Cathode
Material by High-Resolution Electron Microscopy. Journal of Power Sources, 1995. 54(1): p. 68-71.
14. Whitaker, S., Diffusion and Dispersion in Porous Media. AIChE Journal, 1967. 13(3): p. 420-427.
15. Newman, J., and W. Tiedemann, Porous-Electrode Theory with Battery Applications. AIChE Journal, 1975.
21(1): p. 25-41.
16. Nguyen, T. V., A Mathematical Model for a Parallel Plate Electrochemical Reactor, CSTR, and Associated
Recirculation System, Ph.D. Dissertation, 1985, College Park, Texas A & M University.
17. Nguyen, T. V., R. E. White, and H. Gu, The Effects of Separator Design on the Discharge Performance of a
Starved Lead-Acid Cell. Journal of the Electrochemical Society, 1990. 137(10): p. 2998-3004.
18. Fuller, T. F., M. Doyle, and J. Newman, Simulation and Optimization of the Dual Lithium-Ion Insertion Cell.
Journal of the Electrochemical Society, 1994. 141(1): p. 1-10.
19. Gu., W., and C. Y. Wang. Thermal and Electrochemical Coupled Modeling of a Lithium-Ion Cell in Lithium
Batteries, in Proceedings of the Electrochemical Society, Vol. 99-25(1). 2000, Pennington, NJ, Plenum.
20. Wang, C. Y., W. B. Gu, and B. Y. Liaw, Thermal-Electrochemical Modeling of Battery Systems, Journal of
the Electrochemical Society, 2000. 147(8): p. 2910-2922.
21. Ramadass, P., B. Haran, R. White, and B. N. Popov, Mathematical Modeling of the Capacity Fade of Li-Ion
Cells. Journal of Power Sources, 2003. 123(2): p. 230-240.
22. Ramadass, P., B. Haran, P. M. Gomadam, R. White, and B. N. Popov, Development of First Principles
Capacity Fade Model for Li-Ion Cells. Journal of the Electrochemical Society, 2004. 151(2): p. A196-A203.
23. Qi Zhang and R. E. White, Capacity Fade Analysis of a Lithium-Ion Cell. Journal of Power Sources, 2008.
179: p. 793-298.
24. Santhanagopalan, S., J. Stockel, and R. E. White, Life Prediction for Lithium-Ion Batteries, in Encyclopedia
of Electrochemical Power Sources, eds. J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, and B. Scrosati.
Vol. 5, 2009, p. 418-437, Amsterdam: Elsevier Publications.