Page 275 - MATLAB an introduction with applications
P. 275

260 ———  MATLAB: An Introduction with Applications

                   P4.10: Solve the system of equations in Problem P4.2 using Gauss-Seidel method.
                   P4.11: Solve the following set of equations in Problem P4.5 using Householder’s factorization method.
                   P4.12: Use the Householder reduction to transfer the following matrix A into tridiagonal form and solve the
                   set of equations Ax = b, where
                                        7  2  3  − 1       2 
                                        2  8  5  1        − 3 
                                   A =               b =    
                                        3  5 12  9         5 
                                                           
                                       −    11  9  7       7  
                   P4.13: Determine the eigenvalues and eigenvectors of the following matrix using Jacobi method.

                                       11   2    8
                                  [] =     2  2  − 10  
                                  A
                                         9  − 10  5 


                   P4.14: Use Jacobi method to compute the eigenvalues and the corresponding eigenvectors of the following
                   matrix  A:
                                       432 1
                                       34 1 2   
                                  [] =          
                                  A
                                       21 4 3
                                                
                                        1 234 
                                                           ❍ ❍ ❍
   270   271   272   273   274   275   276   277   278   279   280