Page 332 - MATLAB an introduction with applications
P. 332

Optimization ———  317

                   P5.6: Find the minimum of the following function using Powell’s method:

                                          2
                                               2
                                   () =
                                  Fx    7x + 5x − 8x x − 5x 1
                                         1
                                              2
                                                   1 2
                   Starting from (0, 0).
                   P5.7: Repeat Problem P5.5 using Fletcher-Reeves method.
                   P5.8: Repeat Problem P5.6 using Fletcher-Reeves method.
                                                              2
                                                   2
                   P5.9: Minimize f(x , x ) = x  – x  + 2x  + 2x x  + x  starting from the point (0, 0) using Hook and Jeeves
                                                  1
                                                             2
                                     2
                                   1
                                          1
                                                        1 2
                                             2
                   method.
                   P5.10: Repeat Problem P5.1 using Hooke and Jeeves method.
                                                 2
                   P5.11: Minimize  f(x , x ) = (x  – 1)  + (x  – 1) 2
                                    1
                                            1
                                       2
                                                     2
                   subject to    g (x , x ) = –x  ≤ 0
                                             1
                                    1
                                       2
                                  1
                                 g (x , x ) = –x  ≤ 0
                                  2
                                       2
                                    1
                                             2
                                                2
                                            2
                                 g (x , x ) =  x +  x  – 1 ≤ 0
                                    1
                                       2
                                  3
                                                2
                                            1
                                                 2  x 2
                   P5.12: Minimize  f(x , x ) = (x  – 1)  + 2
                                            1
                                       2
                                    1
                   subject to    g (x , x ) = –x  ≤ 0
                                    1
                                       2
                                  2
                                             2
                                                     2
                                 g (x , x ) = x  – (1 – x )  ≤ 0
                                            2
                                       2
                                    1
                                                   1
                                  3
                   P5.13: Use the MATLAB fminbnd function to find the minimum of the function in Problem P5.9.
                                                 2
                                                          2
                   P5.14: Minimize f(x , x ) = 90(x  – x )  + (1 – x )  using the starting point (x  = –1.1, x  = 1.0). Use MATLAB
                                            2
                                                1
                                                                               1
                                     2
                                                                                       2
                                   1
                                                         1
                   built-in function fminsearch.
                   P5.15:
                                                  4
                                        2
                   (a) Minimize  (x  – x )  + (x  – x ) .
                                                3
                                             2
                                       2
                                   1
                       Initial guess: (–2.5, 2, 2)
                   (b) Minimize  x x (x  + x  + x ) + x 3
                                              3
                                  1 4
                                          2
                                      1
                       Initial guess: (1, 4, 5, 1).
                   P5.16:
                       Minimize  x  + 2x  + 3x  + exp(x x )
                                                   1 4
                                            3
                                  1
                                       2
                       Initial guess: (1, 2, 1, 2).
                   P5.17:
                   Minimize      f(x) = x  + 54x  + 3x 3
                                       1
                                             2
                   subject to    x  + 5x  – x  ≥ 4
                                  1
                                       2
                                           3
                                 –x  + x  + 2x  ≥ 1
                                            3
                                   1
                                       2
                                 –x  + 3x  + 3x  ≥ 5
                                             3
                                        2
                                   1
                                 –3x  + 8x  – 5x  ≥ 3
                                         2
                                    1
                                              3
                               0
                   Initial guess: x  = (0, 1, 1).
                   P5.18:
                   Minimize      f (x) = x  + 5x 2
                                       1
   327   328   329   330   331   332   333   334   335   336   337