Page 236 - MEMS and Microstructures in Aerospace Applications
P. 236
Osiander / MEMS and microstructures in Aerospace applications DK3181_c010 Final Proof page 227 1.9.2005 12:13pm
Microsystems in Spacecraft Guidance, Navigation, and Control 227
19. Mobasser, S. and Liebe, C.C., MEMS based sun sensor on a chip, IEEE Conference on
Control Applications — Proceedings 2, 1483, 2003.
20. Mobasser, S., Liebe, C.C., and Howard, A., Fuzzy image processing in sun sensor, IEEE
International Conference on Fuzzy Systems 3, 1337, 2002.
21. Soto-Romero, G. et al., Micro infrared Earth sensor project: an integrated IR camera for
Earth remote sensing, Proceedings of SPIE — The International Society for Optical
Engineering 4540, 176, 2001.
22. Soto-Romero, G. et al., Uncooled micro-Earth sensor for micro-satellite attitude control,
Proceedings of SPIE — The International Society for Optical Engineering 4030, 10,
2000.
23. Bednarek, T.J., Performance characteristics of the multi-mission Earth sensor for chal-
lenging, high-radiation environments, Advances in the Astronautical Sciences 111, 239,
2002.
24. Clark, N., Intelligent star tracker, Proceedings of SPIE 4592, 216, 2001.
25. Eisenman, A.R., Liebe, C.C., and Zhu, D., Multi-purpose active pixel sensor (APS)-
based microtracker, Proceedings of SPIE 3498, 248, 1998.
26. Liebe, C.C. et al., Active pixel sensor (APS) based star tracker, IEEE Aerospace
Applications Conference Proceedings 1, 119, 1998.
27. Lawrence, A., Modern Inertial Technology. Springer Verlag, New York, 1993.
28. Barbour, N. and Schmidt, G., Inertial sensor technology trends, Proceedings of the 1998
Workshop on Autonomous Underwater Vehicles, 20–21 August 1998, Cambridge, MA,
1998.
00
29. John, R. and Dowdle, K.W.F., A GPS/NS Guidance System for Navy 5 Projectiles,
Proceedings — 52nd Annual Meeting, Institute of Navigation, Cambridge, MA, June
1996.
30. Madni, A.M., Wan, L.A., and Hammons, S., Microelectromechanical quartz rotational
rate sensor for inertial applications, IEEE Aerospace Applications Conference Proceed-
ings 2, 315, 1996.
31. Review of MEMS Gyroscopes Technology and Commercialization Status, http://
www.rgrace.com/Conferences/AnaheimExtra/paper/nasiri.doc
32. Smith, R.H., An Analysis of Shuttle-Based Performance of MEMS Sensors, AAS
Technical Paper 98–143, 1998.
33. Bourne, M., Gyros to go, Small Times 20 February 2004.
34. Tang, T.K. et al., Packaged silicon MEMS vibratory gyroscope for microspacecraft,
Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS) 500, 1997.
35. Tang, W.C., Micromechanical devices at JPL for space exploration, IEEE Aerospace
Applications Conference Proceedings 1, 461, 1998.
36. George, T., Overview of MEMS/NEMS technology development for space applications
at NASA/JPL, Proceedings of SPIE 5116, 136, 2003.
37. Zaman, M., Sharma, A., Amini, B., and Ayazi, F., Towards inertial grade vibratory
microgyros: a high-Q in-plane silicon-on-insulator tuning fork device, Proceedings Solid
State Sensor, Actuator, and Microsystems, Hilton Head, 384, 2004.
38. MiniAERCam, http://aercam.nasa.gov
39. Judy, J.W. and Motta, P.S., A lecture and hands-on laboratory course: introduction to
micromachining and MEMS, Biennial University/Government/Industry Microelectron-
ics Symposium — Proceedings 151, 2003.
40. Lewis, S. et al., Integrated sensor and electronics processing for > 108 ‘‘iMEMS’’
inertial measurement unit components, technical digest — International Electron De-
vices Meeting 949, 2003.
© 2006 by Taylor & Francis Group, LLC